找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Tessellations and Three-Manifolds; José María Montesinos-Amilibia Book 1987 Springer-Verlag Berlin Heidelberg 1987 Isometrie.Thr

[復(fù)制鏈接]
查看: 32384|回復(fù): 35
樓主
發(fā)表于 2025-3-21 16:25:00 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Classical Tessellations and Three-Manifolds
編輯José María Montesinos-Amilibia
視頻videohttp://file.papertrans.cn/228/227135/227135.mp4
概述Richly illustrated with 29 colour plates and over 200 line drawings.Deals with euclidean,spherical and hyperbolic tessellations.An unorthodox book, without explicit statements of theorems, but with ge
叢書名稱Universitext
圖書封面Titlebook: Classical Tessellations and Three-Manifolds;  José María Montesinos-Amilibia Book 1987 Springer-Verlag Berlin Heidelberg 1987 Isometrie.Thr
描述This unusual book, richly illustrated with 29 colour illustrations and about 200 line drawings, explores the relationship between classical tessellations and three-manifolds. In his original and entertaining style, the author provides graduate students with a source of geometrical insight into low-dimensional topology. Researchers in this field will find here an account of a theory that is on the one hand known to them but here is "clothed in a different garb" and can be used as a source for seminars on low-dimensional topology, or for preparing independent study projects for students, or again as the basis of a reading course.?
出版日期Book 1987
關(guān)鍵詞Isometrie; Three-Manifolds; crystal; crystallography; manifold; topology
版次1
doihttps://doi.org/10.1007/978-3-642-61572-6
isbn_softcover978-3-540-15291-0
isbn_ebook978-3-642-61572-6Series ISSN 0172-5939 Series E-ISSN 2191-6675
issn_series 0172-5939
copyrightSpringer-Verlag Berlin Heidelberg 1987
The information of publication is updating

書目名稱Classical Tessellations and Three-Manifolds影響因子(影響力)




書目名稱Classical Tessellations and Three-Manifolds影響因子(影響力)學(xué)科排名




書目名稱Classical Tessellations and Three-Manifolds網(wǎng)絡(luò)公開(kāi)度




書目名稱Classical Tessellations and Three-Manifolds網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書目名稱Classical Tessellations and Three-Manifolds被引頻次




書目名稱Classical Tessellations and Three-Manifolds被引頻次學(xué)科排名




書目名稱Classical Tessellations and Three-Manifolds年度引用




書目名稱Classical Tessellations and Three-Manifolds年度引用學(xué)科排名




書目名稱Classical Tessellations and Three-Manifolds讀者反饋




書目名稱Classical Tessellations and Three-Manifolds讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:36:51 | 只看該作者
https://doi.org/10.1007/978-3-642-61572-6Isometrie; Three-Manifolds; crystal; crystallography; manifold; topology
板凳
發(fā)表于 2025-3-22 00:36:02 | 只看該作者
地板
發(fā)表于 2025-3-22 06:01:21 | 只看該作者
5#
發(fā)表于 2025-3-22 12:21:50 | 只看該作者
https://doi.org/10.1007/978-0-387-35697-6closed, orientable 3-manifold known as the . A dodecahedron is a tessellation of the 2-sphere, as is an octahedron or a tetrahedron, for instance. The original examples of tessellations belong to the euclidean plane ?., like the hexagonal mosaics that one can admire in . or in . The hyperbolic plane
6#
發(fā)表于 2025-3-22 16:05:48 | 只看該作者
7#
發(fā)表于 2025-3-22 19:54:34 | 只看該作者
Catherine Meadows,Carl Landwehrert manifold is a manifold (i.e. an orbifold with empty singular set) that fibers over a 2-orbifold whose singular points form a discrete set (and have cyclic isotropy groups). The manifolds of tessellations are the spherical bundles of such 2-orbifolds.
8#
發(fā)表于 2025-3-22 21:26:26 | 只看該作者
9#
發(fā)表于 2025-3-23 03:21:34 | 只看該作者
10#
發(fā)表于 2025-3-23 06:36:39 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-14 21:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宁蒗| 都昌县| 台北市| 台东县| 北碚区| 蛟河市| 康定县| 武山县| 伊春市| 射阳县| 浮梁县| 腾冲县| 叶城县| 黑水县| 青川县| 鲁山县| 盐城市| 沂源县| 林甸县| 社会| 曲靖市| 当涂县| 普兰店市| 嘉荫县| 沂源县| 通城县| 苗栗县| 辽中县| 犍为县| 福鼎市| 托克逊县| 汉川市| 巴马| 华阴市| 嫩江县| 孝义市| 句容市| 绍兴市| 宁陵县| 汕头市| 芦山县|