找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Relativistic Many-Body Dynamics; M. A. Trump,W. C. Schieve Book 1999 Springer Science+Business Media Dordrecht 1999 Gravity.Pote

[復(fù)制鏈接]
查看: 8123|回復(fù): 40
樓主
發(fā)表于 2025-3-21 19:47:35 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Classical Relativistic Many-Body Dynamics
編輯M. A. Trump,W. C. Schieve
視頻videohttp://file.papertrans.cn/228/227127/227127.mp4
叢書名稱Fundamental Theories of Physics
圖書封面Titlebook: Classical Relativistic Many-Body Dynamics;  M. A. Trump,W. C. Schieve Book 1999 Springer Science+Business Media Dordrecht 1999 Gravity.Pote
描述in this work, we must therefore assume several abstract concepts that hardly need defending at this point in the history of mechanics. Most notably, these include the concept of the point particle and the concept of the inertial observer. The study of the relativistic particle system is undertaken here by means of a particular classical theory, which also exists on the quantum level, and which is especially suited to the many-body system in flat spacetime. In its fundamental postulates, the theory may be consid- ered to be primarily the work of E.C.G. Stiickelberg in the 1940‘s, and of L.P. Horwitz and C. Piron in the 1970‘s, who may be said to have provided the generalization of Stiickelberg‘s theory to the many-body system. The references for these works may be found in Chapter 1. The theory itself may be legitimately called off-shell Hamiltonian dynamics, parameterized relativistic mechanics, or even classical event dynamics. The most important feature of the theory is probably the use of an invariant world time parameter, usually denoted T, which provides an evolution time for the system in such as way as to allow manifest co- variance within a Hamiltonian formalism. In general
出版日期Book 1999
關(guān)鍵詞Gravity; Potential; Relativity; astrophysics; classical mechanics
版次1
doihttps://doi.org/10.1007/978-94-015-9303-8
isbn_softcover978-90-481-5232-2
isbn_ebook978-94-015-9303-8Series ISSN 0168-1222 Series E-ISSN 2365-6425
issn_series 0168-1222
copyrightSpringer Science+Business Media Dordrecht 1999
The information of publication is updating

書目名稱Classical Relativistic Many-Body Dynamics影響因子(影響力)




書目名稱Classical Relativistic Many-Body Dynamics影響因子(影響力)學(xué)科排名




書目名稱Classical Relativistic Many-Body Dynamics網(wǎng)絡(luò)公開度




書目名稱Classical Relativistic Many-Body Dynamics網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Classical Relativistic Many-Body Dynamics被引頻次




書目名稱Classical Relativistic Many-Body Dynamics被引頻次學(xué)科排名




書目名稱Classical Relativistic Many-Body Dynamics年度引用




書目名稱Classical Relativistic Many-Body Dynamics年度引用學(xué)科排名




書目名稱Classical Relativistic Many-Body Dynamics讀者反饋




書目名稱Classical Relativistic Many-Body Dynamics讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:15:10 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:26:44 | 只看該作者
0168-1222 notably, these include the concept of the point particle and the concept of the inertial observer. The study of the relativistic particle system is undertaken here by means of a particular classical theory, which also exists on the quantum level, and which is especially suited to the many-body syste
地板
發(fā)表于 2025-3-22 05:14:57 | 只看該作者
Roland Pilous,Timo Leuders,Christian Rüedeneral to consider the motion of a single particle of the .-body system. The results in this chapter are important, however, in establishing the covariant theory on both a kinematical and dynamical level in the next two chapters.
5#
發(fā)表于 2025-3-22 09:49:36 | 只看該作者
6#
發(fā)表于 2025-3-22 16:15:53 | 只看該作者
Frame-Dependent Kinematics,neral to consider the motion of a single particle of the .-body system. The results in this chapter are important, however, in establishing the covariant theory on both a kinematical and dynamical level in the next two chapters.
7#
發(fā)表于 2025-3-22 17:44:29 | 只看該作者
The Coulomb Potential (II),ted by an ordinary spatial rotation of the center-of-mass rest frame, the reduced motion of the relativistic two-body system with conservative potential . = . (.) may be studied without loss of generality in the coordinates,.where Δ. ≡ 0. In 2+1 dimensions, the azimuthal momentum is nonvanishing,
8#
發(fā)表于 2025-3-22 23:26:05 | 只看該作者
9#
發(fā)表于 2025-3-23 04:42:23 | 只看該作者
10#
發(fā)表于 2025-3-23 05:45:55 | 只看該作者
https://doi.org/10.1007/978-3-030-70030-0amental notions of the theory, in particular with the intent of testing the theory for self-consistency. Secondly, the goal of the work was to derive predictive results for specific physical systems with the intent of establishing a critical experiment.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-16 18:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
玉门市| 南昌市| 汉川市| 阿巴嘎旗| 客服| 新巴尔虎左旗| 海盐县| 云霄县| 衢州市| 搜索| 岳阳县| 呼玛县| 泽州县| 永昌县| 乾安县| 台北县| 高陵县| 旌德县| 屏东县| 柘城县| 东城区| 肥西县| 德昌县| 灵石县| 讷河市| 营山县| 怀来县| 洪江市| 三都| 桓台县| 富川| 绩溪县| 河南省| 江城| 彭泽县| 手游| 永年县| 兖州市| 广元市| 区。| 辽阳县|