找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Orthogonal Polynomials of a Discrete Variable; Arnold F. Nikiforov,Vasilii B. Uvarov,Sergei K. Su Textbook 1991 Springer-Verlag

[復(fù)制鏈接]
樓主: 皺紋
21#
發(fā)表于 2025-3-25 06:26:04 | 只看該作者
Manuel Rudolph,Svenja Polst,Joerg DoerrIn the approximate calculation of definite integrals and of sums of a large number of terms, numerical analysis makes extensive use of quadrature formulas of Gaussian type, which depend on properties of orthogonal polynomials.
22#
發(fā)表于 2025-3-25 08:01:37 | 只看該作者
23#
發(fā)表于 2025-3-25 13:29:33 | 只看該作者
24#
發(fā)表于 2025-3-25 16:13:17 | 只看該作者
Classical Orthogonal Polynomials of a Discrete Variableelations of a more general form, which can be expressed in terms of Stielties integrals . where .(.) is a monotonic nondecreasing function (usually called the distribution function). The orthogonality relation (2.0.2) is reduced to (2.0.1) in the case when the function .(.) has a derivative on (a, .
25#
發(fā)表于 2025-3-25 21:39:20 | 只看該作者
Classical Orthogonal Polynomials of a Discrete Variable on Nonuniform Lattices equation . which approximates (3.1.1) on a lattice of constant mesh . = .. After a change of independent variable, . = .(.) we can obtain a further generalization to the case when (3.1.1) is replaced by a difference equation on a class of lattices with variable mesh . = .(. + .) - .(.): . Equation
26#
發(fā)表于 2025-3-26 02:29:26 | 只看該作者
27#
發(fā)表于 2025-3-26 07:43:53 | 只看該作者
Hyperspherical HarmonicsAn important class of special functions which naturally occur in this work is constituted by .. In quantum mechanis these functions are used to construct basis functions in the .-harmonic method and in the translation-invariant model of shells thus enabling one to compute the fundamental physical ch
28#
發(fā)表于 2025-3-26 09:48:06 | 只看該作者
29#
發(fā)表于 2025-3-26 12:49:02 | 只看該作者
30#
發(fā)表于 2025-3-26 20:40:49 | 只看該作者
Bernadette O’Rourke,Sara C. Brennandringlich, um eine Kontinuit?t der wissenschaftsimmanenten Best?nde aufzudecken und künftig zu vermeiden. Es sollten daher st?rker die institutionellen Strukturen, die theoretischen Voraussetzungen und die methodologischen Instrumente in die fachhistorische Forschung einbezogen werden.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-24 14:38
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宾阳县| 育儿| 吉安县| 开平市| 远安县| 佛教| 开阳县| 宝清县| 松阳县| 法库县| 加查县| 忻城县| 泸水县| 洪湖市| 都兰县| 松阳县| 民丰县| 临朐县| 津南区| 贵定县| 三河市| 吉安市| 富蕴县| 高密市| 正定县| 客服| 赤峰市| 龙泉市| 白朗县| 九寨沟县| 神木县| 兰州市| 罗源县| 成安县| 民和| 柳州市| 从化市| 绥滨县| 杭州市| 开化县| 德州市|