找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Nonintegrability, Quantum Chaos; Andreas Knauf,Yakov G. Sinai,Viviane Baladi Book 1997 Springer Basel AG 1997 Finite.Invariant.a

[復(fù)制鏈接]
查看: 18656|回復(fù): 40
樓主
發(fā)表于 2025-3-21 18:04:05 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Classical Nonintegrability, Quantum Chaos
編輯Andreas Knauf,Yakov G. Sinai,Viviane Baladi
視頻videohttp://file.papertrans.cn/228/227113/227113.mp4
叢書名稱Oberwolfach Seminars
圖書封面Titlebook: Classical Nonintegrability, Quantum Chaos;  Andreas Knauf,Yakov G. Sinai,Viviane Baladi Book 1997 Springer Basel AG 1997 Finite.Invariant.a
描述Our DMV Seminar on ‘Classical Nonintegrability, Quantum Chaos‘ intended to introduce students and beginning researchers to the techniques applied in nonin- tegrable classical and quantum dynamics. Several of these lectures are collected in this volume. The basic phenomenon of nonlinear dynamics is mixing in phase space, lead- ing to a positive dynamical entropy and a loss of information about the initial state. The nonlinear motion in phase space gives rise to a linear action on phase space functions which in the case of iterated maps is given by a so-called transfer operator. Good mixing rates lead to a spectral gap for this operator. Similar to the use made of the Riemann zeta function in the investigation of the prime numbers, dynamical zeta functions are now being applied in nonlinear dynamics. In Chapter 2 V. Baladi first introduces dynamical zeta functions and transfer operators, illustrating and motivating these notions with a simple one-dimensional dynamical system. Then she presents a commented list of useful references, helping the newcomer to enter smoothly into this fast-developing field of research. Chapter 3 on irregular scattering and Chapter 4 on quantum chaos by A.
出版日期Book 1997
關(guān)鍵詞Finite; Invariant; analysis; ergodic theory; function; geometry; mathematical physics; mathematics; nonlinea
版次1
doihttps://doi.org/10.1007/978-3-0348-8932-2
isbn_softcover978-3-7643-5708-5
isbn_ebook978-3-0348-8932-2Series ISSN 1661-237X Series E-ISSN 2296-5041
issn_series 1661-237X
copyrightSpringer Basel AG 1997
The information of publication is updating

書目名稱Classical Nonintegrability, Quantum Chaos影響因子(影響力)




書目名稱Classical Nonintegrability, Quantum Chaos影響因子(影響力)學(xué)科排名




書目名稱Classical Nonintegrability, Quantum Chaos網(wǎng)絡(luò)公開度




書目名稱Classical Nonintegrability, Quantum Chaos網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Classical Nonintegrability, Quantum Chaos被引頻次




書目名稱Classical Nonintegrability, Quantum Chaos被引頻次學(xué)科排名




書目名稱Classical Nonintegrability, Quantum Chaos年度引用




書目名稱Classical Nonintegrability, Quantum Chaos年度引用學(xué)科排名




書目名稱Classical Nonintegrability, Quantum Chaos讀者反饋




書目名稱Classical Nonintegrability, Quantum Chaos讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:42:39 | 只看該作者
1661-237X nces, helping the newcomer to enter smoothly into this fast-developing field of research. Chapter 3 on irregular scattering and Chapter 4 on quantum chaos by A.978-3-7643-5708-5978-3-0348-8932-2Series ISSN 1661-237X Series E-ISSN 2296-5041
板凳
發(fā)表于 2025-3-22 02:12:18 | 只看該作者
地板
發(fā)表于 2025-3-22 07:22:17 | 只看該作者
5#
發(fā)表于 2025-3-22 10:33:14 | 只看該作者
6#
發(fā)表于 2025-3-22 16:50:31 | 只看該作者
7#
發(fā)表于 2025-3-22 17:33:37 | 只看該作者
8#
發(fā)表于 2025-3-23 01:16:28 | 只看該作者
Lecture Notes in Computer ScienceScattering experiments are a primary source of our knowledge about elementary particles, atoms and molecules. Similarly celestial bodies are scattered by the sun or the whole solar system.
9#
發(fā)表于 2025-3-23 03:19:54 | 只看該作者
Alessio Ferrari,Birgit PenzenstadlerQuantum chaos is defined to be the quantum mechanics for a classically chaoticor, to be definite, ergodic — motion.
10#
發(fā)表于 2025-3-23 09:06:52 | 只看該作者
Lecture Notes in Computer ScienceThe notion of ergodicity was introduced by L. Boltzmann in connection with Foundations of Statistical Mechanics. Now its role for Statistical Mechanics is not so much clear but it is very important for the theory of dynamical systems and deterministic chaos.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-23 12:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
酒泉市| 平武县| 博客| 九台市| 永康市| 娱乐| 乌兰县| 涿州市| 普兰县| 云林县| 兰州市| 嘉善县| 舟曲县| 建瓯市| 大丰市| 宝山区| 建宁县| 永顺县| 鹤山市| 自贡市| 新郑市| 兴文县| 北票市| 中西区| 融水| 太康县| 民勤县| 永州市| 成安县| 建始县| 福建省| 洛扎县| 南木林县| 博客| 台湾省| 仁怀市| 大渡口区| 邢台县| 莫力| 灌阳县| 郎溪县|