找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Mirror Symmetry; Masao Jinzenji Book 2018 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd., part of

[復制鏈接]
查看: 19755|回復: 35
樓主
發(fā)表于 2025-3-21 18:45:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Classical Mirror Symmetry
編輯Masao Jinzenji
視頻videohttp://file.papertrans.cn/228/227108/227108.mp4
概述Restricts readers‘ attention to the best-known example of mirror symmetry: a quintic hypersurface in CP^4.Explains mirror symmetry from the point of view of a researcher involved in physics and mathem
叢書名稱SpringerBriefs in Mathematical Physics
圖書封面Titlebook: Classical Mirror Symmetry;  Masao Jinzenji Book 2018 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd., part of
描述This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold..First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold..On the B-model side, the process of construction of a pair of mirror Calabi–Yau threefold using toric geometry is briefly explained. Also given are detailed explanations of the derivation of the Picard–Fuchs differential equation
出版日期Book 2018
關鍵詞Mirror Symmetry; Topological Sigma Model; Gromov-Witten invariants; Bott Residue Formula; Projective Hyp
版次1
doihttps://doi.org/10.1007/978-981-13-0056-1
isbn_softcover978-981-13-0055-4
isbn_ebook978-981-13-0056-1Series ISSN 2197-1757 Series E-ISSN 2197-1765
issn_series 2197-1757
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd., part of Springer Natur
The information of publication is updating

書目名稱Classical Mirror Symmetry影響因子(影響力)




書目名稱Classical Mirror Symmetry影響因子(影響力)學科排名




書目名稱Classical Mirror Symmetry網(wǎng)絡公開度




書目名稱Classical Mirror Symmetry網(wǎng)絡公開度學科排名




書目名稱Classical Mirror Symmetry被引頻次




書目名稱Classical Mirror Symmetry被引頻次學科排名




書目名稱Classical Mirror Symmetry年度引用




書目名稱Classical Mirror Symmetry年度引用學科排名




書目名稱Classical Mirror Symmetry讀者反饋




書目名稱Classical Mirror Symmetry讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:29:39 | 只看該作者
https://doi.org/10.1007/978-981-13-0056-1Mirror Symmetry; Topological Sigma Model; Gromov-Witten invariants; Bott Residue Formula; Projective Hyp
板凳
發(fā)表于 2025-3-22 01:02:35 | 只看該作者
978-981-13-0055-4The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd., part of Springer Natur
地板
發(fā)表于 2025-3-22 04:53:15 | 只看該作者
DOORS: A Tool to Manage Requirements,tic string theory in order to obtain a 4-dimensional grand unified theory that describes our real world. The complex 3-dimensional Calabi–Yau manifold is nothing but the compact 6-dimensional space used for this purpose. In this chapter, we explain why this idea came from particle physicists and giv
5#
發(fā)表于 2025-3-22 11:25:46 | 只看該作者
Elizabeth Hull,Ken Jackson,Jeremy Dickst, we introduce the definition of complex manifolds and holomorphic vector bundles on complex manifolds. We also discuss Chern classes of holomorphic vector bundles. Then we introduce K.hler manifolds, which play a central role in geometry of complex manifolds, and explain various characteristics o
6#
發(fā)表于 2025-3-22 14:51:40 | 只看該作者
7#
發(fā)表于 2025-3-22 19:37:46 | 只看該作者
8#
發(fā)表于 2025-3-22 23:30:22 | 只看該作者
9#
發(fā)表于 2025-3-23 04:10:55 | 只看該作者
Masao JinzenjiRestricts readers‘ attention to the best-known example of mirror symmetry: a quintic hypersurface in CP^4.Explains mirror symmetry from the point of view of a researcher involved in physics and mathem
10#
發(fā)表于 2025-3-23 05:49:31 | 只看該作者
SpringerBriefs in Mathematical Physicshttp://image.papertrans.cn/c/image/227108.jpg
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
客服| 甘泉县| 抚远县| 湖口县| 菏泽市| 金溪县| 梨树县| 沧源| 贺兰县| 南江县| 宁强县| 成武县| 青阳县| 乌恰县| 沂南县| 平阴县| 桐柏县| 芜湖县| 富锦市| 福建省| 济阳县| 台州市| 上林县| 麻江县| 海安县| 濮阳市| 团风县| 辽源市| 杨浦区| 汶川县| 河北省| 乌兰浩特市| 六枝特区| 浮山县| 莱阳市| 花垣县| 和田市| 邯郸县| 舞阳县| 六安市| 巫溪县|