找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Mirror Symmetry; Masao Jinzenji Book 2018 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd., part of

[復制鏈接]
查看: 19755|回復: 35
樓主
發(fā)表于 2025-3-21 18:45:49 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Classical Mirror Symmetry
編輯Masao Jinzenji
視頻videohttp://file.papertrans.cn/228/227108/227108.mp4
概述Restricts readers‘ attention to the best-known example of mirror symmetry: a quintic hypersurface in CP^4.Explains mirror symmetry from the point of view of a researcher involved in physics and mathem
叢書名稱SpringerBriefs in Mathematical Physics
圖書封面Titlebook: Classical Mirror Symmetry;  Masao Jinzenji Book 2018 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd., part of
描述This book furnishes a brief introduction to classical mirror symmetry, a term that denotes the process of computing Gromov–Witten invariants of a Calabi–Yau threefold by using the Picard–Fuchs differential equation of period integrals of its mirror Calabi–Yau threefold. The book concentrates on the best-known example, the quintic hypersurface in 4-dimensional projective space, and its mirror manifold..First, there is a brief review of the process of discovery of mirror symmetry and the striking result proposed in the celebrated paper by Candelas and his collaborators. Next, some elementary results of complex manifolds and Chern classes needed for study of mirror symmetry are explained. Then the topological sigma models, the A-model and the B-model, are introduced. The classical mirror symmetry hypothesis is explained as the equivalence between the correlation function of the A-model of a quintic hyper-surface and that of the B-model of its mirror manifold..On the B-model side, the process of construction of a pair of mirror Calabi–Yau threefold using toric geometry is briefly explained. Also given are detailed explanations of the derivation of the Picard–Fuchs differential equation
出版日期Book 2018
關鍵詞Mirror Symmetry; Topological Sigma Model; Gromov-Witten invariants; Bott Residue Formula; Projective Hyp
版次1
doihttps://doi.org/10.1007/978-981-13-0056-1
isbn_softcover978-981-13-0055-4
isbn_ebook978-981-13-0056-1Series ISSN 2197-1757 Series E-ISSN 2197-1765
issn_series 2197-1757
copyrightThe Author(s), under exclusive license to Springer Nature Singapore Pte Ltd., part of Springer Natur
The information of publication is updating

書目名稱Classical Mirror Symmetry影響因子(影響力)




書目名稱Classical Mirror Symmetry影響因子(影響力)學科排名




書目名稱Classical Mirror Symmetry網(wǎng)絡公開度




書目名稱Classical Mirror Symmetry網(wǎng)絡公開度學科排名




書目名稱Classical Mirror Symmetry被引頻次




書目名稱Classical Mirror Symmetry被引頻次學科排名




書目名稱Classical Mirror Symmetry年度引用




書目名稱Classical Mirror Symmetry年度引用學科排名




書目名稱Classical Mirror Symmetry讀者反饋




書目名稱Classical Mirror Symmetry讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:29:39 | 只看該作者
https://doi.org/10.1007/978-981-13-0056-1Mirror Symmetry; Topological Sigma Model; Gromov-Witten invariants; Bott Residue Formula; Projective Hyp
板凳
發(fā)表于 2025-3-22 01:02:35 | 只看該作者
978-981-13-0055-4The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd., part of Springer Natur
地板
發(fā)表于 2025-3-22 04:53:15 | 只看該作者
DOORS: A Tool to Manage Requirements,tic string theory in order to obtain a 4-dimensional grand unified theory that describes our real world. The complex 3-dimensional Calabi–Yau manifold is nothing but the compact 6-dimensional space used for this purpose. In this chapter, we explain why this idea came from particle physicists and giv
5#
發(fā)表于 2025-3-22 11:25:46 | 只看該作者
Elizabeth Hull,Ken Jackson,Jeremy Dickst, we introduce the definition of complex manifolds and holomorphic vector bundles on complex manifolds. We also discuss Chern classes of holomorphic vector bundles. Then we introduce K.hler manifolds, which play a central role in geometry of complex manifolds, and explain various characteristics o
6#
發(fā)表于 2025-3-22 14:51:40 | 只看該作者
7#
發(fā)表于 2025-3-22 19:37:46 | 只看該作者
8#
發(fā)表于 2025-3-22 23:30:22 | 只看該作者
9#
發(fā)表于 2025-3-23 04:10:55 | 只看該作者
Masao JinzenjiRestricts readers‘ attention to the best-known example of mirror symmetry: a quintic hypersurface in CP^4.Explains mirror symmetry from the point of view of a researcher involved in physics and mathem
10#
發(fā)表于 2025-3-23 05:49:31 | 只看該作者
SpringerBriefs in Mathematical Physicshttp://image.papertrans.cn/c/image/227108.jpg
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 14:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
永胜县| 巫山县| 华宁县| 河池市| 西吉县| 高邮市| 响水县| 五华县| 金门县| 通榆县| 张北县| 瑞金市| 基隆市| 丽水市| 华宁县| 浪卡子县| 大连市| 古蔺县| 旅游| 建阳市| 海口市| 阿勒泰市| 宁城县| 从化市| 阳信县| 江门市| 濮阳县| 梧州市| 八宿县| 健康| 绥江县| 益阳市| 游戏| 上饶县| 靖远县| 牙克石市| 新闻| 饶河县| 梁河县| 丹东市| 扎鲁特旗|