找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Mechanics with Mathematica?; Antonio Romano,Addolorata Marasco Textbook 2018Latest edition Springer International Publishing AG,

[復制鏈接]
查看: 23345|回復: 63
樓主
發(fā)表于 2025-3-21 16:41:51 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Classical Mechanics with Mathematica?
編輯Antonio Romano,Addolorata Marasco
視頻videohttp://file.papertrans.cn/228/227104/227104.mp4
概述Offers a unique and broad approach to mechanics, integrating linear algebra, analysis, and differential geometry.Provides an illuminating historical perspective on the subject, including the models of
叢書名稱Modeling and Simulation in Science, Engineering and Technology
圖書封面Titlebook: Classical Mechanics with Mathematica?;  Antonio Romano,Addolorata Marasco Textbook 2018Latest edition Springer International Publishing AG,
描述.This textbook takes a broad yet thorough approach to mechanics, aimed at bridging the gap between classical analytic and modern differential geometric approaches to the subject. Developed by the authors from over 30 years of teaching experience, the presentation is designed to give students an overview of the many different models used through the history of the field—from Newton to Hamilton—while also painting a clear picture of the most modern developments..The text is organized into two parts. The first focuses on developing the mathematical framework of linear algebra and differential geometry necessary for the remainder of the book. Topics covered include tensor algebra, Euclidean and symplectic vector spaces, differential manifolds, and absolute differential calculus. The second part of the book applies these topics to kinematics, rigid body dynamics, Lagrangian and Hamiltonian dynamics, Hamilton–Jacobi theory, completely integrable systems, statistical mechanics of equilibrium, and impulsive dynamics, among others.? This new edition has been completely revised and updated and now includes almost 200 exercises, as well as new chapters on celestial mechanics, one-dimensional
出版日期Textbook 2018Latest edition
關(guān)鍵詞Classical Mechanics; Analytical Mechanics; Differential Geometry; Point Dynamics; Rigid Body Dynamics; St
版次2
doihttps://doi.org/10.1007/978-3-319-77595-1
isbn_softcover978-3-030-08489-9
isbn_ebook978-3-319-77595-1Series ISSN 2164-3679 Series E-ISSN 2164-3725
issn_series 2164-3679
copyrightSpringer International Publishing AG, part of Springer Nature 2018
The information of publication is updating

書目名稱Classical Mechanics with Mathematica?影響因子(影響力)




書目名稱Classical Mechanics with Mathematica?影響因子(影響力)學科排名




書目名稱Classical Mechanics with Mathematica?網(wǎng)絡(luò)公開度




書目名稱Classical Mechanics with Mathematica?網(wǎng)絡(luò)公開度學科排名




書目名稱Classical Mechanics with Mathematica?被引頻次




書目名稱Classical Mechanics with Mathematica?被引頻次學科排名




書目名稱Classical Mechanics with Mathematica?年度引用




書目名稱Classical Mechanics with Mathematica?年度引用學科排名




書目名稱Classical Mechanics with Mathematica?讀者反饋




書目名稱Classical Mechanics with Mathematica?讀者反饋學科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:31:14 | 只看該作者
Euclidean and Symplectic Vector Spacest and the antiscalar product. A vector space equipped with the first operation is called a Euclidean vector space, whereas when it is equipped with the second operation, it is said to be a symplectic vector space. These operations allow us to introduce into . many other geometric and algebraic conce
板凳
發(fā)表于 2025-3-22 03:12:22 | 只看該作者
地板
發(fā)表于 2025-3-22 06:02:46 | 只看該作者
5#
發(fā)表于 2025-3-22 11:38:07 | 只看該作者
Exterior Derivative and Integratione exterior derivative extends to .-forms the elementary definitions of gradient of a function, curl, and divergence of a vector field as well as the meaning of exact and closed 1-forms. The integration of .-forms allows to extend the definitions of surface and volume integrals as well as the Gauss a
6#
發(fā)表于 2025-3-22 16:16:40 | 只看該作者
7#
發(fā)表于 2025-3-22 20:52:10 | 只看該作者
8#
發(fā)表于 2025-3-22 22:26:04 | 只看該作者
9#
發(fā)表于 2025-3-23 03:12:39 | 只看該作者
Kinematics of?Rigid Bodiesnslational, rotational, spherical, and planar motions are studied. Finally, the transformation formulae of velocity and acceleration from a rigid frame of reference to another one are determined. Exercises conclude the chapter.
10#
發(fā)表于 2025-3-23 09:23:32 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 01:03
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
宝鸡市| 潮安县| 安庆市| 客服| 视频| 南投市| 百色市| 铅山县| 清镇市| 东源县| 红安县| 山东省| 永城市| 科技| 永定县| 勃利县| 敦煌市| 随州市| 汉阴县| 镇宁| 通江县| 泽库县| 柘荣县| 来凤县| 伽师县| 黎城县| 湟中县| 侯马市| 佛山市| 临沧市| 夹江县| 太谷县| 广丰县| 施甸县| 佛山市| 宜宾县| 福安市| 福清市| 竹北市| 南部县| 铜梁县|