找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Mechanics with Mathematica?; Romano Antonio Textbook 20121st edition Springer Science+Business Media New York 2012 Lagrangian an

[復制鏈接]
樓主: fumble
21#
發(fā)表于 2025-3-25 06:17:08 | 只看該作者
Tensor AlgebraThis chapter contains an introduction to tensor algebra. After defining covectors and dual bases, the space of covariant two-tensor is introduced. Then, the results derived for this space are extended to the general space of the (.,.)-tensors.
22#
發(fā)表于 2025-3-25 10:38:03 | 只看該作者
23#
發(fā)表于 2025-3-25 14:51:32 | 只看該作者
Duality and Euclidean TensorsIn this section, we show that when .. is a Euclidean vector space, there is an isomorphism among the tensor spaces ...(..) for which .+. has a given value. In other words, we show the existence of an isomorphism between .. and ..., of isomorphisms between ..., ..., and ..., and so on.
24#
發(fā)表于 2025-3-25 18:12:42 | 只看該作者
Differentiable ManifoldsLet . be an open set of ... The real-valued function . :.→. is said to be of...(.) or a ... in ., where .≥0, if it is continuous with its partial derivatives up to the order .. In particular, a .. function in . is a continuous one.
25#
發(fā)表于 2025-3-25 23:28:13 | 只看該作者
One-Parameter Groups of DiffeomorphismsA.. on a manifold .. of class .., .>0, is a .. map
26#
發(fā)表于 2025-3-26 02:17:11 | 只看該作者
27#
發(fā)表于 2025-3-26 06:06:31 | 只看該作者
An Overview of Dynamical SystemsIn previous chapters, some fundamental concepts of algebra and differential geometry were presented. This chapter is devoted to an overview of dynamical systems that play a fundamental role in building mathematical models of reality.
28#
發(fā)表于 2025-3-26 11:19:11 | 只看該作者
Dynamics of a Material PointA positional force is said to be . with center . if its force law is . where . is the position vector relative to ..
29#
發(fā)表于 2025-3-26 13:23:40 | 只看該作者
30#
發(fā)表于 2025-3-26 16:53:40 | 只看該作者
 關于派博傳思  派博傳思旗下網站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網 吾愛論文網 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網安備110108008328) GMT+8, 2025-10-8 23:55
Copyright © 2001-2015 派博傳思   京公網安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
阳高县| 连山| 阿拉善右旗| 鄄城县| 杂多县| 特克斯县| 绵阳市| 兖州市| 夏邑县| 呼伦贝尔市| 榕江县| 临夏县| 台中县| 鄂托克旗| 武陟县| 汉寿县| 扶风县| 赫章县| 商洛市| 永宁县| 泾川县| 靖边县| 民县| 政和县| 沁水县| 巴里| 剑河县| 寻乌县| 东辽县| 湟源县| 黎川县| 绥德县| 乐安县| 永宁县| 桐城市| 巴南区| 宝应县| 高州市| 锡林郭勒盟| 永修县| 甘泉县|