找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Mechanics with Mathematica?; Romano Antonio Textbook 20121st edition Springer Science+Business Media New York 2012 Lagrangian an

[復制鏈接]
樓主: fumble
21#
發(fā)表于 2025-3-25 06:17:08 | 只看該作者
Tensor AlgebraThis chapter contains an introduction to tensor algebra. After defining covectors and dual bases, the space of covariant two-tensor is introduced. Then, the results derived for this space are extended to the general space of the (.,.)-tensors.
22#
發(fā)表于 2025-3-25 10:38:03 | 只看該作者
23#
發(fā)表于 2025-3-25 14:51:32 | 只看該作者
Duality and Euclidean TensorsIn this section, we show that when .. is a Euclidean vector space, there is an isomorphism among the tensor spaces ...(..) for which .+. has a given value. In other words, we show the existence of an isomorphism between .. and ..., of isomorphisms between ..., ..., and ..., and so on.
24#
發(fā)表于 2025-3-25 18:12:42 | 只看該作者
Differentiable ManifoldsLet . be an open set of ... The real-valued function . :.→. is said to be of...(.) or a ... in ., where .≥0, if it is continuous with its partial derivatives up to the order .. In particular, a .. function in . is a continuous one.
25#
發(fā)表于 2025-3-25 23:28:13 | 只看該作者
One-Parameter Groups of DiffeomorphismsA.. on a manifold .. of class .., .>0, is a .. map
26#
發(fā)表于 2025-3-26 02:17:11 | 只看該作者
27#
發(fā)表于 2025-3-26 06:06:31 | 只看該作者
An Overview of Dynamical SystemsIn previous chapters, some fundamental concepts of algebra and differential geometry were presented. This chapter is devoted to an overview of dynamical systems that play a fundamental role in building mathematical models of reality.
28#
發(fā)表于 2025-3-26 11:19:11 | 只看該作者
Dynamics of a Material PointA positional force is said to be . with center . if its force law is . where . is the position vector relative to ..
29#
發(fā)表于 2025-3-26 13:23:40 | 只看該作者
30#
發(fā)表于 2025-3-26 16:53:40 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-9 05:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
都匀市| 英山县| 淳安县| 巍山| 呈贡县| 准格尔旗| 平阳县| 宜黄县| 县级市| 满城县| 牙克石市| 昌平区| 塘沽区| 文安县| 成安县| 色达县| 沂水县| 永新县| 郓城县| 永吉县| 林芝县| 沙坪坝区| 钦州市| 满洲里市| 汉源县| 延津县| 鄂尔多斯市| 云龙县| 雷州市| 高淳县| 岑溪市| 益阳市| 塘沽区| 萝北县| 炉霍县| 綦江县| 崇州市| 沙雅县| 丰台区| 潜山县| 周宁县|