找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Hopf Algebras and Their Applications; Pierre Cartier,Frédéric Patras Book 2021 Springer Nature Switzerland AG 2021 Hopf algebras

[復(fù)制鏈接]
查看: 45996|回復(fù): 49
樓主
發(fā)表于 2025-3-21 17:34:07 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Classical Hopf Algebras and Their Applications
編輯Pierre Cartier,Frédéric Patras
視頻videohttp://file.papertrans.cn/228/227077/227077.mp4
概述Offers a modern and systematic treatment of the classical structure theory of Hopf algebras.Covers the general theory and a wide range of classical and recent applications.Written by one of the founde
叢書名稱Algebra and Applications
圖書封面Titlebook: Classical Hopf Algebras and Their Applications;  Pierre Cartier,Frédéric Patras Book 2021 Springer Nature Switzerland AG 2021 Hopf algebras
描述This book is dedicated to the structure and combinatorics of classical Hopf algebras. Its main focus is on commutative and cocommutative Hopf algebras, such as algebras of representative functions on groups and enveloping algebras of Lie algebras, as explored in the works of Borel, Cartier, Hopf and others in the 1940s and 50s..The modern and systematic treatment uses the approach of natural operations, illuminating the structure of Hopf algebras by means of their endomorphisms and their combinatorics. Emphasizing notions such as pseudo-coproducts, characteristic endomorphisms, descent algebras and Lie idempotents, the text also covers the important case of enveloping algebras of pre-Lie algebras. A wide range of applications are surveyed, highlighting the main ideas and fundamental results..Suitable as a textbook for masters or doctoral level programs, this book will be of interest to algebraists and anyone working in one of the fields of application of Hopf algebras..
出版日期Book 2021
關(guān)鍵詞Hopf algebras; descent gebra; Lie idempotents; pre-Lie algebras; group theory; algebraic topology; renorma
版次1
doihttps://doi.org/10.1007/978-3-030-77845-3
isbn_softcover978-3-030-77847-7
isbn_ebook978-3-030-77845-3Series ISSN 1572-5553 Series E-ISSN 2192-2950
issn_series 1572-5553
copyrightSpringer Nature Switzerland AG 2021
The information of publication is updating

書目名稱Classical Hopf Algebras and Their Applications影響因子(影響力)




書目名稱Classical Hopf Algebras and Their Applications影響因子(影響力)學(xué)科排名




書目名稱Classical Hopf Algebras and Their Applications網(wǎng)絡(luò)公開度




書目名稱Classical Hopf Algebras and Their Applications網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Classical Hopf Algebras and Their Applications被引頻次




書目名稱Classical Hopf Algebras and Their Applications被引頻次學(xué)科排名




書目名稱Classical Hopf Algebras and Their Applications年度引用




書目名稱Classical Hopf Algebras and Their Applications年度引用學(xué)科排名




書目名稱Classical Hopf Algebras and Their Applications讀者反饋




書目名稱Classical Hopf Algebras and Their Applications讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:47:13 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:10:52 | 只看該作者
Model Checking and Computation Tree Logic,ch as, for example, enveloping algebras of pre-Lie algebras. Applications developed will include duality phenomena in group theory; classical Hopf algebra structures in algebraic topology; combinatorial Hopf algebras; and Hopf algebraic renormalization.
地板
發(fā)表于 2025-3-22 08:10:29 | 只看該作者
5#
發(fā)表于 2025-3-22 11:02:04 | 只看該作者
Book 2021highlighting the main ideas and fundamental results..Suitable as a textbook for masters or doctoral level programs, this book will be of interest to algebraists and anyone working in one of the fields of application of Hopf algebras..
6#
發(fā)表于 2025-3-22 15:35:45 | 只看該作者
7#
發(fā)表于 2025-3-22 19:57:07 | 只看該作者
8#
發(fā)表于 2025-3-22 23:54:02 | 只看該作者
9#
發(fā)表于 2025-3-23 01:42:44 | 只看該作者
10#
發(fā)表于 2025-3-23 09:09:38 | 只看該作者
Pre-lie Algebrasrious application domains such as perturbative quantum field theory or numerical analysis, to quote only a few. They generate a special class of Lie algebras and have enveloping algebras enjoying more properties than usual enveloping algebras of Lie algebras.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 09:42
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
昌平区| 康平县| 华蓥市| 冷水江市| 鄂托克前旗| 龙井市| 松江区| 确山县| 石首市| 微山县| 九江市| 洛扎县| 会东县| 泸州市| 茌平县| 大港区| 西安市| 利津县| 七台河市| 塘沽区| 新田县| 和龙市| 犍为县| 海宁市| 谢通门县| 临沂市| 修文县| 施秉县| 巴林左旗| 镇康县| 磐安县| 启东市| 南昌市| 温泉县| 威远县| 德昌县| 武鸣县| 广水市| 陆丰市| 华亭县| 安康市|