找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Geometries in Modern Contexts; Geometry of Real Inn Walter Benz Book 2012Latest edition Springer Basel 2012 Inner product space.L

[復(fù)制鏈接]
查看: 16245|回復(fù): 38
樓主
發(fā)表于 2025-3-21 19:57:12 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Classical Geometries in Modern Contexts
副標(biāo)題Geometry of Real Inn
編輯Walter Benz
視頻videohttp://file.papertrans.cn/228/227073/227073.mp4
概述Dimension-free presentation Inclusion of proofs of newer theorems characterizing isometries and Lorentz transformations under mild hypotheses.Common presentation for finite and infinite dimensional re
圖書(shū)封面Titlebook: Classical Geometries in Modern Contexts; Geometry of Real Inn Walter Benz Book 2012Latest edition Springer Basel 2012 Inner product space.L
描述.The focus of this book and its geometric notions is on real vector spaces X that are finite or infinite inner product spaces of arbitrary dimension greater than or equal to 2. It characterizes both euclidean and hyperbolic geometry with respect to natural properties of (general) translations and general distances of X. Also for these spaces X, it studies the sphere geometries of M?bius and Lie as well as geometries where Lorentz transformations play the key role..Proofs of newer theorems characterizing isometries and Lorentz transformations under mild hypotheses are included, such as for instance infinite dimensional versions of famous theorems of A.D. Alexandrov on Lorentz transformations. A real benefit is the dimension-free approach to important geometrical theories. .New to this third edition is a chapter dealing with a simple and great idea of Leibniz that allows us to characterize, for these same spaces X, hyperplanes of euclidean, hyperbolic geometry, or spherical geometry, the geometries of Lorentz-Minkowski and de Sitter, and this through finite or infinite dimensions greater than 1. .Another new and fundamental result in this edition concerns the representation of hyperb
出版日期Book 2012Latest edition
關(guān)鍵詞Inner product space; Lorentz transformation; classical geometry; hyperbolic geometry; sphere geometry
版次3
doihttps://doi.org/10.1007/978-3-0348-0420-2
isbn_softcover978-3-0348-0741-8
isbn_ebook978-3-0348-0420-2
copyrightSpringer Basel 2012
The information of publication is updating

書(shū)目名稱Classical Geometries in Modern Contexts影響因子(影響力)




書(shū)目名稱Classical Geometries in Modern Contexts影響因子(影響力)學(xué)科排名




書(shū)目名稱Classical Geometries in Modern Contexts網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Classical Geometries in Modern Contexts網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Classical Geometries in Modern Contexts被引頻次




書(shū)目名稱Classical Geometries in Modern Contexts被引頻次學(xué)科排名




書(shū)目名稱Classical Geometries in Modern Contexts年度引用




書(shū)目名稱Classical Geometries in Modern Contexts年度引用學(xué)科排名




書(shū)目名稱Classical Geometries in Modern Contexts讀者反饋




書(shū)目名稱Classical Geometries in Modern Contexts讀者反饋學(xué)科排名




單選投票, 共有 0 人參與投票
 

0票 0%

Perfect with Aesthetics

 

0票 0%

Better Implies Difficulty

 

0票 0%

Good and Satisfactory

 

0票 0%

Adverse Performance

 

0票 0%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 20:29:49 | 只看該作者
板凳
發(fā)表于 2025-3-22 04:13:08 | 只看該作者
地板
發(fā)表于 2025-3-22 08:30:06 | 只看該作者
https://doi.org/10.1007/978-3-0348-0420-2Inner product space; Lorentz transformation; classical geometry; hyperbolic geometry; sphere geometry
5#
發(fā)表于 2025-3-22 09:52:51 | 只看該作者
6#
發(fā)表于 2025-3-22 14:25:57 | 只看該作者
http://image.papertrans.cn/c/image/227073.jpg
7#
發(fā)表于 2025-3-22 19:45:55 | 只看該作者
https://doi.org/10.1057/9780230287440A ..is a real vector space X together with a mapping .satisfying . for all ...
8#
發(fā)表于 2025-3-23 01:13:57 | 只看該作者
9#
發(fā)表于 2025-3-23 03:13:53 | 只看該作者
10#
發(fā)表于 2025-3-23 08:21:23 | 只看該作者
First Person Suspect, or, the Enemy Within …As in the chapters before, . denotes a real inner product space of arbitrary (finite or infinite) dimension ≥ 2.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 14:47
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
炎陵县| 绥德县| 长海县| 谷城县| 丹江口市| 井冈山市| 淮北市| 拉萨市| 鄂托克旗| 海伦市| 遵义县| 龙井市| 泽库县| 定南县| 珠海市| 杨浦区| 抚顺县| 云安县| 贡觉县| 双桥区| 黑龙江省| 荥阳市| 三原县| 太原市| 尖扎县| 九江县| 肃南| 即墨市| 东平县| 玉屏| 忻城县| 讷河市| 新干县| 亚东县| 湘乡市| 清水县| 宁陵县| 察雅县| 平泉县| 桦川县| 塔河县|