找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Classical Fourier Analysis; Loukas Grafakos Textbook 2014Latest edition Springer Science+Business Media, LLC, part of Springer Nature 2014

[復(fù)制鏈接]
樓主: CYNIC
11#
發(fā)表于 2025-3-23 12:38:58 | 只看該作者
Maximal Functions, Fourier Transform, and Distributions, Averaging is an important operation in analysis and naturally arises in many situations. The study of averages of functions is better understood by the introduction of the maximal function which is defined as the largest average of a function over all balls containing a fixed point. Maximal functio
12#
發(fā)表于 2025-3-23 14:06:22 | 只看該作者
13#
發(fā)表于 2025-3-23 19:17:25 | 只看該作者
14#
發(fā)表于 2025-3-23 23:02:20 | 只看該作者
15#
發(fā)表于 2025-3-24 02:39:35 | 只看該作者
Weighted Inequalities,ample, the theory of weights plays an important role in the study of boundary value problems for Laplace’s equation on Lipschitz domains. Other applications of weighted inequalities include extrapolation theory, vector-valued inequalities, and estimates for certain classes of nonlinear partial diffe
16#
發(fā)表于 2025-3-24 09:19:26 | 只看該作者
17#
發(fā)表于 2025-3-24 11:27:03 | 只看該作者
18#
發(fā)表于 2025-3-24 16:42:07 | 只看該作者
19#
發(fā)表于 2025-3-24 19:31:06 | 只看該作者
Romance in the East: An Introduction,of Fourier series and Bochner–Riesz summability. We also study transference of multipliers on the torus and of maximal multipliers. This is a powerful technique that allows one to infer results concerning Fourier series from corresponding results about Fourier integrals and vice versa.
20#
發(fā)表于 2025-3-24 23:54:12 | 只看該作者
https://doi.org/10.1057/978-1-137-59929-2ample, the theory of weights plays an important role in the study of boundary value problems for Laplace’s equation on Lipschitz domains. Other applications of weighted inequalities include extrapolation theory, vector-valued inequalities, and estimates for certain classes of nonlinear partial differential equations.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 03:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
巫山县| 海盐县| 蓬溪县| 嘉义县| 南开区| 松溪县| 红桥区| 云安县| 阳东县| 福建省| 巧家县| 周宁县| 随州市| 金川县| 温宿县| 柳林县| 安阳县| 永登县| 双鸭山市| 江达县| 湘西| 朝阳市| 黄山市| 虞城县| 梁平县| 曲松县| 万山特区| 离岛区| 密云县| 临猗县| 龙泉市| 汝州市| 南漳县| 凌海市| 尚义县| 绥芬河市| 盐边县| 泌阳县| 梅河口市| 乌兰察布市| 电白县|