找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classgroups and Hermitian Modules; A. Fr?hlich Book 1984 Birkh?user Boston, Inc. 1984 Invariant.Volume.algebra.algebraic invariant.arithme

[復(fù)制鏈接]
樓主: CYNIC
11#
發(fā)表于 2025-3-23 10:11:46 | 只看該作者
12#
發(fā)表于 2025-3-23 14:01:44 | 只看該作者
Applications in Arithmetic,This chapter deals with a particular Hermitian module, namely that of the ring of integers in a tame normal extension of a global or local field, viewed as a Galois module, together with the Hermitian form coming from the trace. It was this application which originally motivated the making of a general Hermitian theory.
13#
發(fā)表于 2025-3-23 19:32:29 | 只看該作者
14#
發(fā)表于 2025-3-24 01:53:55 | 只看該作者
15#
發(fā)表于 2025-3-24 02:20:26 | 只看該作者
978-1-4684-6742-0Birkh?user Boston, Inc. 1984
16#
發(fā)表于 2025-3-24 08:25:01 | 只看該作者
Classgroups and Hermitian Modules978-1-4684-6740-6Series ISSN 0743-1643 Series E-ISSN 2296-505X
17#
發(fā)表于 2025-3-24 11:25:20 | 只看該作者
18#
發(fā)表于 2025-3-24 15:17:13 | 只看該作者
19#
發(fā)表于 2025-3-24 21:40:04 | 只看該作者
,Begründung der Replikationstheorie, of Theorems 8 and 10 are more general, we shall make again the blanket assumptions that . is global or local or a field — as in the preceding chapters. This is preferable to having at each stage lengthy detailed statements of the precise conditions under which some assertion holds. The “generality” game is left to the reader, be he so inclined.
20#
發(fā)表于 2025-3-25 01:30:44 | 只看該作者
Change of Order, of Theorems 8 and 10 are more general, we shall make again the blanket assumptions that . is global or local or a field — as in the preceding chapters. This is preferable to having at each stage lengthy detailed statements of the precise conditions under which some assertion holds. The “generality” game is left to the reader, be he so inclined.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 16:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
法库县| 乌拉特中旗| 嫩江县| 曲沃县| 富平县| 得荣县| 都江堰市| 广饶县| 齐河县| 铁力市| 梨树县| 油尖旺区| 拜城县| 荔波县| 隆安县| 九台市| 织金县| 奉新县| 抚宁县| 鄄城县| 抚顺县| 乐安县| 布拖县| 天柱县| 健康| 资溪县| 封丘县| 湖北省| 县级市| 仁怀市| 津市市| 玉门市| 寻甸| 樟树市| 汾西县| 任丘市| 军事| 鲁山县| 隆林| 衡东县| 龙岩市|