找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classes of Good Noetherian Rings; Cristodor Ionescu Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[復(fù)制鏈接]
樓主: Sentry
21#
發(fā)表于 2025-3-25 03:47:47 | 只看該作者
Christina M. Comty,Fred L. ShapiroF-finite rings, rings that were long ago proved to be excellent. In order to include Scheja-Storch results about excellent rings, we chose to include the main features of the theory of universally finite module of differentials.
22#
發(fā)表于 2025-3-25 10:01:10 | 只看該作者
Book 2023mine some of the most important topics in the area, including? Nagata, F-finite and excellent?rings, Bertini’s Theorem, and Cohen factorizations. Of particular interest is the presentation of Popescu’s Theorem on Neron Desingularization and the structure of regular morphisms, with a complete proof.?
23#
發(fā)表于 2025-3-25 11:47:27 | 只看該作者
Replacement of Renal Function by Dialysisrm of the second Theorem of Bertini is used in the proof, we decided to present this result that is important in many places in Commutative Algebra and Algebraic Geometry. This chapter uses notions and results from Algebraic Geometry. They are collected in Sect. 4.1.
24#
發(fā)表于 2025-3-25 18:15:48 | 只看該作者
Localization and Lifting Theorems,rm of the second Theorem of Bertini is used in the proof, we decided to present this result that is important in many places in Commutative Algebra and Algebraic Geometry. This chapter uses notions and results from Algebraic Geometry. They are collected in Sect. 4.1.
25#
發(fā)表于 2025-3-25 21:23:53 | 只看該作者
26#
發(fā)表于 2025-3-26 01:25:46 | 只看該作者
27#
發(fā)表于 2025-3-26 05:25:11 | 只看該作者
Excellent Rings and Regular Morphisms,rian rings, a topic that always proved to be quite subtle. Then we focus on criteria about regular morphisms and excellent rings. One can find here the famous André theorem about the localization of formal smoothness, theorem that is also the starting point for Chap. .. There are many results about
28#
發(fā)表于 2025-3-26 09:03:15 | 只看該作者
29#
發(fā)表于 2025-3-26 13:06:32 | 只看該作者
30#
發(fā)表于 2025-3-26 16:48:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 21:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
天峻县| 西安市| 磐石市| 阿勒泰市| 嘉义市| 监利县| 泗水县| 肃北| 樟树市| 印江| 邯郸市| 乐清市| 赣榆县| 长春市| 阿巴嘎旗| 桐乡市| 乾安县| 磐石市| 永德县| 吕梁市| 彰化县| 广南县| 平阳县| 新竹县| 松江区| 巴塘县| 克东县| 建水县| 无锡市| 田东县| 海宁市| 林州市| 石嘴山市| 莱州市| 攀枝花市| 东光县| 乐清市| 上高县| 合肥市| 苏尼特右旗| 丹凤县|