找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Classes of Good Noetherian Rings; Cristodor Ionescu Book 2023 The Editor(s) (if applicable) and The Author(s), under exclusive license to

[復(fù)制鏈接]
樓主: Sentry
21#
發(fā)表于 2025-3-25 03:47:47 | 只看該作者
Christina M. Comty,Fred L. ShapiroF-finite rings, rings that were long ago proved to be excellent. In order to include Scheja-Storch results about excellent rings, we chose to include the main features of the theory of universally finite module of differentials.
22#
發(fā)表于 2025-3-25 10:01:10 | 只看該作者
Book 2023mine some of the most important topics in the area, including? Nagata, F-finite and excellent?rings, Bertini’s Theorem, and Cohen factorizations. Of particular interest is the presentation of Popescu’s Theorem on Neron Desingularization and the structure of regular morphisms, with a complete proof.?
23#
發(fā)表于 2025-3-25 11:47:27 | 只看該作者
Replacement of Renal Function by Dialysisrm of the second Theorem of Bertini is used in the proof, we decided to present this result that is important in many places in Commutative Algebra and Algebraic Geometry. This chapter uses notions and results from Algebraic Geometry. They are collected in Sect. 4.1.
24#
發(fā)表于 2025-3-25 18:15:48 | 只看該作者
Localization and Lifting Theorems,rm of the second Theorem of Bertini is used in the proof, we decided to present this result that is important in many places in Commutative Algebra and Algebraic Geometry. This chapter uses notions and results from Algebraic Geometry. They are collected in Sect. 4.1.
25#
發(fā)表于 2025-3-25 21:23:53 | 只看該作者
26#
發(fā)表于 2025-3-26 01:25:46 | 只看該作者
27#
發(fā)表于 2025-3-26 05:25:11 | 只看該作者
Excellent Rings and Regular Morphisms,rian rings, a topic that always proved to be quite subtle. Then we focus on criteria about regular morphisms and excellent rings. One can find here the famous André theorem about the localization of formal smoothness, theorem that is also the starting point for Chap. .. There are many results about
28#
發(fā)表于 2025-3-26 09:03:15 | 只看該作者
29#
發(fā)表于 2025-3-26 13:06:32 | 只看該作者
30#
發(fā)表于 2025-3-26 16:48:48 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 23:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
白玉县| 双桥区| 汕尾市| 福鼎市| 重庆市| 牟定县| 邢台县| 额尔古纳市| 盐源县| 连南| 来凤县| 中卫市| 海兴县| 葫芦岛市| 商都县| 微博| 桦南县| 巧家县| 玉林市| 潜江市| 房产| 伊春市| 海口市| 五河县| 晋宁县| 穆棱市| 虞城县| 凤山市| 北安市| 淮南市| 长垣县| 灵武市| 岢岚县| 凭祥市| 安塞县| 永靖县| 西和县| 剑阁县| 渝北区| 福安市| 澜沧|