找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D; 17th China National Maosong Sun,Ting

[復(fù)制鏈接]
樓主: minuscule
11#
發(fā)表于 2025-3-23 11:38:42 | 只看該作者
Reaction and Renewal in South Africand correlation in languages, this paper proposed the labeled bilingual topic model and co-occurrence feature based similarity metric which could be adopted to the word translation identifying task. First of all, it could assume that the keywords in the scientific literature are relevant to the abstr
12#
發(fā)表于 2025-3-23 17:48:43 | 只看該作者
https://doi.org/10.1007/978-1-349-24772-1hallenging part in the translation of historical classics. However, it is tough to recognize the terms directly from ancient Chinese due to the flexible syntactic of ancient Chinese and the word segmentation errors of ancient Chinese will lead to more errors in term translation extraction. Consideri
13#
發(fā)表于 2025-3-23 20:04:03 | 只看該作者
Automaton Mechanics of Mutualismachine translation is almost blank. In this paper, the neural machine translation model is applied to the Chinese-Tibetan machine translation task for the first time, the syntax tree is also introduced into the Chinese-Tibetan neural machine translation model for the first time, and a good translati
14#
發(fā)表于 2025-3-23 23:50:17 | 只看該作者
15#
發(fā)表于 2025-3-24 05:01:52 | 只看該作者
16#
發(fā)表于 2025-3-24 06:44:05 | 只看該作者
https://doi.org/10.1007/978-3-642-31078-2designed features, which are usually time-consuming and may lead to poor generalization. Besides, most existing systems adopt pipeline methods, which treat the task as two separated tasks, i.e., named entity recognition and relation extraction. However, the pipeline methods suffer two problems: (1)
17#
發(fā)表于 2025-3-24 13:36:46 | 只看該作者
Ismael Saz,Zira Box,Julián‘Sanzwhich can help modify the coreference cluster to rule out the dissimilar mention in the cluster and reduce errors caused by the global inconsistence of coreference clusters. Additionally, we tune the model from two aspects to get more accurate coreference resolution results. On one hand, the simple
18#
發(fā)表于 2025-3-24 15:35:05 | 只看該作者
19#
發(fā)表于 2025-3-24 21:17:50 | 只看該作者
Radical Enhanced Chinese Word Embeddinger as the minimum processing unit of the text, without using the semantic information about Chinese characters and the radicals in Chinese words. To this end, we proposed a radical enhanced Chinese word embedding in this paper. The model uses conversion and radical escaping mechanisms to extract the
20#
發(fā)表于 2025-3-25 00:16:06 | 只看該作者
Syntax Enhanced Research Method of Stylistic Featurese content of a sentence and the syntactic structures constitute the framework of a sentence. How to combine both aspects and exploit their common advantages is a challenging issue. In this paper, we propose a Principal Stylistic Features Analysis method (PSFA) to combine these two parts, and then mi
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 14:09
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
固阳县| 丰县| 遂平县| 将乐县| 卓资县| 苗栗县| 南宫市| 隆昌县| 金堂县| 高清| 资源县| 财经| 诏安县| 宜宾市| 饶阳县| 保靖县| 攀枝花市| 达拉特旗| 即墨市| 慈利县| 昌宁县| 嘉峪关市| 桦川县| 三亚市| 大姚县| 航空| 和田县| 稷山县| 望都县| 宿迁市| 沛县| 当涂县| 京山县| 泌阳县| 临海市| 黄浦区| 承德市| 温宿县| 那坡县| 汝阳县| 北辰区|