找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D; 15th China National Maosong Sun,Xuan

[復制鏈接]
樓主: 大破壞
41#
發(fā)表于 2025-3-28 14:49:50 | 只看該作者
42#
發(fā)表于 2025-3-28 22:49:53 | 只看該作者
Tibetan Person Attributes Extraction Based on BP Neural Networkn on the network. In the face of the massive network information, extracting the information that people want is an urgent problem to be solved. Currently, Chinese person attributes extraction studies have some good results, but there is still much space to Tibetan person attributes extraction. The
43#
發(fā)表于 2025-3-29 00:27:16 | 只看該作者
Semi-supervised Learning for Mongolian Morphological Segmentationore a novel semi-supervised method for a practical application, i.e., statistical machine translation (SMT), based on a low-resource learning setting, in which a small amount of labeled data and large amount of unlabeled data are available. First, a CRF-based supervised learning is exploited to pred
44#
發(fā)表于 2025-3-29 04:38:26 | 只看該作者
45#
發(fā)表于 2025-3-29 09:24:31 | 只看該作者
Recognizing Biomedical Named Entities Based on the Sentence Vector/Twin Word Embeddings Conditioned network has been applied on the entity recognition to avoid the complex hand-designed features, which are derived from various linguistic analyses. However, performance of the conventional neural network systems is always limited to exploiting long range dependencies in sentences. In this paper, we
46#
發(fā)表于 2025-3-29 15:22:25 | 只看該作者
https://doi.org/10.1007/978-981-19-9673-3tion errors decrease significantly after English sentences are parsed into NT clauses. This result reveals that non-SV clauses are the main source of MT errors, and suggests that English long sentences should be parsed into NT clauses before they are translated.
47#
發(fā)表于 2025-3-29 17:35:26 | 只看該作者
Chinese Computational Linguistics and Natural Language Processing Based on Naturally Annotated Big D15th China National
48#
發(fā)表于 2025-3-29 19:52:17 | 只看該作者
Error Analysis of English-Chinese Machine Translationtion errors decrease significantly after English sentences are parsed into NT clauses. This result reveals that non-SV clauses are the main source of MT errors, and suggests that English long sentences should be parsed into NT clauses before they are translated.
49#
發(fā)表于 2025-3-30 02:54:10 | 只看該作者
50#
發(fā)表于 2025-3-30 04:10:56 | 只看該作者
978-3-319-47673-5Springer International Publishing AG 2016
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 12:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
汤阴县| 达拉特旗| 甘肃省| 沅江市| 双辽市| 孟连| 房山区| 乌苏市| 宾阳县| 泸溪县| 偃师市| 东乌| 盐源县| 西宁市| 泊头市| 涞源县| 黄骅市| 涪陵区| 中西区| 敖汉旗| 城步| 汉川市| 元谋县| 武乡县| 红桥区| 金沙县| 洛隆县| 灵寿县| 焦作市| 苍南县| 阿克苏市| 昌平区| 云南省| 马尔康县| 安丘市| 惠东县| 蒲城县| 宿州市| 闵行区| 泰来县| 滨海县|