找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chinese Computational Linguistics; 18th China National Maosong Sun,Xuanjing Huang,Yang Liu Conference proceedings 2019 Springer Nature Swi

[復(fù)制鏈接]
樓主: 壓縮
11#
發(fā)表于 2025-3-23 12:17:29 | 只看該作者
12#
發(fā)表于 2025-3-23 16:17:20 | 只看該作者
BB-KBQA: BERT-Based Knowledge Base Question Answeringuistic knowledge to obtain deep contextualized representations. Experimental results demonstrate that our model can achieve the state-of-the-art performance on the NLPCC- ICCPOL 2016 KBQA dataset, with an 84.12% averaged F1 score(1.65% absolute improvement).
13#
發(fā)表于 2025-3-23 19:35:42 | 只看該作者
14#
發(fā)表于 2025-3-23 22:21:10 | 只看該作者
Lecture Notes in Computer Scienced to explain the recognition ability of four NN-based models at a fine-grained level. The experimental results show that all the models have poor performance in the commonsense reasoning than in other entailment categories. The highest accuracy difference is 13.22%.
15#
發(fā)表于 2025-3-24 02:36:38 | 只看該作者
Paulin Jacobé de Naurois,Virgile Mogbilnd the interactive effects of keypoints in two sentences to learn sentence similarity. With less computational complexity, our model yields state-of-the-art improvement compared with other baseline models in paraphrase identification task on the Ant Financial competition dataset.
16#
發(fā)表于 2025-3-24 10:05:38 | 只看該作者
Synthesis Problems for One-Counter Automata,l results show due to different linguistic features, the neural components have different effects in English and Chinese. Besides, our models achieve state-of-the-art performance on CoNLL-2016 English and Chinese datasets.
17#
發(fā)表于 2025-3-24 12:02:25 | 只看該作者
https://doi.org/10.1007/978-3-319-45994-3elected sentence by an abstractive decoder. Moreover, we apply the BERT pre-trained model as document encoder, sharing the context representations to both decoders. Experiments on the CNN/DailyMail dataset show that the proposed framework outperforms both state-of-the-art extractive and abstractive models.
18#
發(fā)表于 2025-3-24 18:30:29 | 只看該作者
Testing the Reasoning Power for NLI Models with Annotated Multi-perspective Entailment Datasetd to explain the recognition ability of four NN-based models at a fine-grained level. The experimental results show that all the models have poor performance in the commonsense reasoning than in other entailment categories. The highest accuracy difference is 13.22%.
19#
發(fā)表于 2025-3-24 22:59:04 | 只看該作者
ERCNN: Enhanced Recurrent Convolutional Neural Networks for Learning Sentence Similaritynd the interactive effects of keypoints in two sentences to learn sentence similarity. With less computational complexity, our model yields state-of-the-art improvement compared with other baseline models in paraphrase identification task on the Ant Financial competition dataset.
20#
發(fā)表于 2025-3-25 02:18:06 | 只看該作者
Comparative Investigation of Deep Learning Components for End-to-end Implicit Discourse Relationshipl results show due to different linguistic features, the neural components have different effects in English and Chinese. Besides, our models achieve state-of-the-art performance on CoNLL-2016 English and Chinese datasets.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 01:52
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
来凤县| 东兰县| 清远市| 信阳市| 夏邑县| 四平市| 鹤庆县| 建湖县| 武定县| 宜阳县| 瑞安市| 姚安县| 吉木乃县| 澎湖县| 新兴县| 乐业县| 铁岭市| 武隆县| 陇西县| 寻甸| 吉木萨尔县| 江门市| 上饶县| 朝阳县| 湟中县| 宜川县| 南昌市| 成都市| 麦盖提县| 鄂托克前旗| 慈利县| 新沂市| 台江县| 佛坪县| 新兴县| 罗源县| 治多县| 富宁县| 高州市| 桐梓县| 扎鲁特旗|