找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups; Nick Gill,Martin W. Liebeck,Pablo Spiga Book 2022 The Editor(s) (if a

[復(fù)制鏈接]
查看: 9314|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:20:28 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups
編輯Nick Gill,Martin W. Liebeck,Pablo Spiga
視頻videohttp://file.papertrans.cn/225/224977/224977.mp4
概述Provides a solution to the Cherlin conjecture on binary groups.Gives a classification of the finite binary relational structures.Includes a comprehensive review of previous work on finite primitive bi
叢書名稱Lecture Notes in Mathematics
圖書封面Titlebook: Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups;  Nick Gill,Martin W. Liebeck,Pablo Spiga Book 2022 The Editor(s) (if a
描述This book gives a proof of Cherlin’s conjecture for finite binary primitive permutation groups. Motivated by the part of model theory concerned with Lachlan’s theory of finite homogeneous relational structures, this conjecture proposes a classification of those finite primitive permutation groups that have relational complexity equal to 2.?.The first part gives a full introduction to Cherlin’s conjecture, including all the key ideas that have been used in the literature to prove some of its special cases.?The second part completes the proof by dealing with primitive permutation groups that are almost simple with socle a group of Lie type. A great deal of material concerning properties of primitive permutation groups and almost simple groups is included, and new ideas are introduced.?.Addressing a hot topic which cuts across the disciplines of group theory, model theory and logic, this book will be of interest toa wide range of readers. It will be particularly useful for graduate students and researchers who need to work with simple groups of Lie type..
出版日期Book 2022
關(guān)鍵詞Combinatorics; Finite Primitive Groups; Binary Permutation Groups; Relational Complexity; Binary Relatio
版次1
doihttps://doi.org/10.1007/978-3-030-95956-2
isbn_softcover978-3-030-95955-5
isbn_ebook978-3-030-95956-2Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups影響因子(影響力)




書目名稱Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups影響因子(影響力)學(xué)科排名




書目名稱Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups網(wǎng)絡(luò)公開度




書目名稱Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups被引頻次




書目名稱Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups被引頻次學(xué)科排名




書目名稱Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups年度引用




書目名稱Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups年度引用學(xué)科排名




書目名稱Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups讀者反饋




書目名稱Cherlin’s Conjecture for Finite Primitive Binary Permutation Groups讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-22 00:15:04 | 只看該作者
Nick Gill,Martin W. Liebeck,Pablo SpigaProvides a solution to the Cherlin conjecture on binary groups.Gives a classification of the finite binary relational structures.Includes a comprehensive review of previous work on finite primitive bi
板凳
發(fā)表于 2025-3-22 01:16:59 | 只看該作者
地板
發(fā)表于 2025-3-22 06:55:03 | 只看該作者
Was ist Qi-Management und was bewirkt es?e in the same .-orbit. Here we say .?=?(.., ..., ..) and .?=?(.., ..., ..) are 2-. if any pair (.., ..) can be mapped to the corresponding pair (.., ..) by an element of .. The definition was coined by Gregory Cherlin as part of his theory of homogeneous structures in model theory. Over 20 years ago
5#
發(fā)表于 2025-3-22 12:16:59 | 只看該作者
https://doi.org/10.1007/978-3-642-41304-9rimitive group on a set . having socle a simple classical group, then either . is not binary or |.|∈{5, 6, 8}. The proof uses some of the results in the first two chapters together with detailed information on the maximal subgroups of ..
6#
發(fā)表于 2025-3-22 14:17:42 | 只看該作者
7#
發(fā)表于 2025-3-22 20:46:22 | 只看該作者
978-3-030-95955-5The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
8#
發(fā)表于 2025-3-22 23:41:28 | 只看該作者
Qi-Management – Die Kata der ManagerIn this chapter we prove a variety of results about finite groups of Lie type that will be used in our proof of Cherlin’s conjecture in later chapters. These results concern automorphisms, centralizers, alternating sections, and, most substantially, proofs that various special actions are non-binary.
9#
發(fā)表于 2025-3-23 04:54:25 | 只看該作者
Stressmanagement und KampfkunstIn this chapter we prove Cherlin’s conjecture for exceptional groups of Lie type. Our main result shows that, if . is an almost simple primitive group having socle an exceptional group of Lie type, then . is not binary. The proof uses some of the results in the previous chapters together with a detailed analysis of the maximal subgroups of ..
10#
發(fā)表于 2025-3-23 06:20:14 | 只看該作者
Preliminary Results for Groups of Lie Type,In this chapter we prove a variety of results about finite groups of Lie type that will be used in our proof of Cherlin’s conjecture in later chapters. These results concern automorphisms, centralizers, alternating sections, and, most substantially, proofs that various special actions are non-binary.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-27 07:16
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
通化市| 和顺县| 泗水县| 乌什县| 社旗县| 荔波县| 治多县| 花垣县| 虹口区| 饶河县| 法库县| 长寿区| 神池县| 金川县| 九龙城区| 德保县| 农安县| 南岸区| 苗栗市| 顺昌县| 故城县| 逊克县| 凤山县| 武清区| 呼玛县| 武穴市| 兴文县| 读书| 广灵县| 普兰店市| 襄樊市| 洛隆县| 阳信县| 老河口市| 江华| 万载县| 荔浦县| 镇康县| 甘泉县| 桃园县| 刚察县|