找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chebyshev Splines and Kolmogorov Inequalities; Sergey K. Bagdasarov Book 1998 Birkh?user Verlag 1998 Topology.calculus.equation.function.o

[復(fù)制鏈接]
查看: 6907|回復(fù): 55
樓主
發(fā)表于 2025-3-21 17:10:57 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱(chēng)Chebyshev Splines and Kolmogorov Inequalities
編輯Sergey K. Bagdasarov
視頻videohttp://file.papertrans.cn/225/224201/224201.mp4
叢書(shū)名稱(chēng)Operator Theory: Advances and Applications
圖書(shū)封面Titlebook: Chebyshev Splines and Kolmogorov Inequalities;  Sergey K. Bagdasarov Book 1998 Birkh?user Verlag 1998 Topology.calculus.equation.function.o
出版日期Book 1998
關(guān)鍵詞Topology; calculus; equation; function; optimization; theorem
版次1
doihttps://doi.org/10.1007/978-3-0348-8808-0
isbn_softcover978-3-0348-9781-5
isbn_ebook978-3-0348-8808-0Series ISSN 0255-0156 Series E-ISSN 2296-4878
issn_series 0255-0156
copyrightBirkh?user Verlag 1998
The information of publication is updating

書(shū)目名稱(chēng)Chebyshev Splines and Kolmogorov Inequalities影響因子(影響力)




書(shū)目名稱(chēng)Chebyshev Splines and Kolmogorov Inequalities影響因子(影響力)學(xué)科排名




書(shū)目名稱(chēng)Chebyshev Splines and Kolmogorov Inequalities網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱(chēng)Chebyshev Splines and Kolmogorov Inequalities網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱(chēng)Chebyshev Splines and Kolmogorov Inequalities被引頻次




書(shū)目名稱(chēng)Chebyshev Splines and Kolmogorov Inequalities被引頻次學(xué)科排名




書(shū)目名稱(chēng)Chebyshev Splines and Kolmogorov Inequalities年度引用




書(shū)目名稱(chēng)Chebyshev Splines and Kolmogorov Inequalities年度引用學(xué)科排名




書(shū)目名稱(chēng)Chebyshev Splines and Kolmogorov Inequalities讀者反饋




書(shū)目名稱(chēng)Chebyshev Splines and Kolmogorov Inequalities讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶(hù)組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:20:53 | 只看該作者
https://doi.org/10.1007/978-3-0348-8808-0Topology; calculus; equation; function; optimization; theorem
板凳
發(fā)表于 2025-3-22 02:05:35 | 只看該作者
地板
發(fā)表于 2025-3-22 08:20:26 | 只看該作者
5#
發(fā)表于 2025-3-22 11:09:55 | 只看該作者
6#
發(fā)表于 2025-3-22 15:44:42 | 只看該作者
https://doi.org/10.1007/978-1-4302-0391-9 < 1, and some interval [0, ..], .. = ..(., ω, ., .). Then, referring to the results of our paper [7] or [8], we describe the Chebyshev ω-splines of the problem (0.0) for arbitrary ω. Finally, we analyze various properties of Chebyshev ω-splines crucial in the construction of extremal functions in the Kolmogorov problem on the half-line ?..
7#
發(fā)表于 2025-3-22 19:38:50 | 只看該作者
Design Patterns: Making CSS Easy!, the problem (0.0) for ω(.) = . by E. Landau [54] in the case . = ?. and J. Hadamard [31] in the case . = ?. A number of other elementary cases of the Kolmogorov-Landau problem for ω(.) = . are discussed by I. J. Schoenberg in [72].
8#
發(fā)表于 2025-3-22 21:49:03 | 只看該作者
https://doi.org/10.1007/978-1-4302-0391-9points of alternance on the interval [0, 1]. Relying on the Rolle theorem or an application of Fredholm kernels, we give two proofs of extremality of Chebyshev perfect splines of the problem . for all 0 < . ≤ .. Then, we discuss the possibility of application of these two methods to the solution of
9#
發(fā)表于 2025-3-23 03:23:36 | 只看該作者
10#
發(fā)表于 2025-3-23 09:28:43 | 只看該作者
https://doi.org/10.1007/978-1-4302-0391-9 < 1, and some interval [0, ..], .. = ..(., ω, ., .). Then, referring to the results of our paper [7] or [8], we describe the Chebyshev ω-splines of the problem (0.0) for arbitrary ω. Finally, we analyze various properties of Chebyshev ω-splines crucial in the construction of extremal functions in t
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 06:05
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
潼关县| 西平县| 舒城县| 浪卡子县| 土默特左旗| 瑞金市| 读书| 永济市| 铜鼓县| 旺苍县| 平凉市| 淅川县| 罗平县| 崇州市| 区。| 河东区| 伊宁县| 牡丹江市| 淮阳县| 府谷县| 肃北| 新晃| 海原县| 和硕县| 两当县| 西贡区| 新昌县| 宝鸡市| 常州市| 施甸县| 西宁市| 睢宁县| 南昌县| 潢川县| 建始县| 福海县| 蒲城县| 扶风县| 临高县| 色达县| 平安县|