找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Charge and Spin Transport in Disordered Graphene-Based Materials; Dinh Van Tuan Book 2016 Springer International Publishing Switzerland 20

[復(fù)制鏈接]
樓主: 自治
11#
發(fā)表于 2025-3-23 11:47:31 | 只看該作者
https://doi.org/10.1007/978-981-99-5865-8ter system where the charge carrier dynamics can be described as quasi-relativistic particles with zero effective carrier mass and the transport properties are governed by the Dirac equation, whereby their mobilities have unprecedentedly large values.
12#
發(fā)表于 2025-3-23 14:55:31 | 只看該作者
https://doi.org/10.1007/978-981-99-5865-8d density, etc. However, as with most other materials, defects are unavoidable during the preparation of graphene and can play a key role in many observables, and particularly electronic properties. The purpose of this chapter is to discuss the transport properties of realistic graphene with the inc
13#
發(fā)表于 2025-3-23 19:44:23 | 只看該作者
14#
發(fā)表于 2025-3-24 01:28:17 | 只看該作者
15#
發(fā)表于 2025-3-24 05:13:20 | 只看該作者
16#
發(fā)表于 2025-3-24 08:00:01 | 只看該作者
https://doi.org/10.1007/978-981-99-5865-8Graphene has received a great attention since it was first isolated by Nobel Laureates Konstantin Novoselov and Andre K. Geim in 2004.
17#
發(fā)表于 2025-3-24 13:39:35 | 只看該作者
https://doi.org/10.1007/978-981-99-5865-8Quantum simulations are very important tools to study transport phenomena in the nanoscale. There are two numerical approaches for quantum transport simulations at the present, one is the widely used non-equilibrium Green’s function (NEGF) method, the other is the Kubo-Greenwood method.
18#
發(fā)表于 2025-3-24 16:31:06 | 只看該作者
https://doi.org/10.1007/978-981-99-5865-8In this thesis, I have presented the charge transport of disordered graphene as well as explained the fast spin relaxation in graphene which is one of the most interesting topics in graphene at the moment.
19#
發(fā)表于 2025-3-24 20:44:36 | 只看該作者
Electronic and Transport Properties of Graphene,Graphene has received a great attention since it was first isolated by Nobel Laureates Konstantin Novoselov and Andre K. Geim in 2004.
20#
發(fā)表于 2025-3-25 02:24:42 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-13 16:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
华宁县| 无为县| 曲麻莱县| 顺平县| 都匀市| 海兴县| 兰溪市| 珲春市| 和平区| 米林县| 鄂伦春自治旗| 陆川县| 新田县| 阿鲁科尔沁旗| 剑阁县| 磐石市| 嘉祥县| 德保县| 扎囊县| 廊坊市| 静海县| 湖口县| 扎囊县| 永兴县| 绩溪县| 双桥区| 榕江县| 德钦县| 墨玉县| 黄浦区| 通城县| 忻城县| 绍兴市| 柳江县| 太康县| 玉溪市| 项城市| 赞皇县| 丘北县| 钟山县| 蓬莱市|