找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Characters and Blocks of Solvable Groups; A User’s Guide to La James Cossey,Yong Yang Book 2024 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
樓主: 租期
21#
發(fā)表于 2025-3-25 06:31:27 | 只看該作者
22#
發(fā)表于 2025-3-25 09:56:40 | 只看該作者
23#
發(fā)表于 2025-3-25 15:37:34 | 只看該作者
https://doi.org/10.1007/978-3-031-50706-9Solvable Groups; Character Theory; Blocks of Finite Groups; Representations of Finite Groups; Large Orbi
24#
發(fā)表于 2025-3-25 16:26:52 | 只看該作者
978-3-031-50708-3The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
25#
發(fā)表于 2025-3-25 21:37:01 | 只看該作者
Regular Orbits in the Quasiprimitve Casesee our first of several important results bounding the size of certain fixed point subspaces, and we see how to use those bounds to generate regular orbits. We end with a discussion of the work of the second author that classifies the solvable primitive groups that do not have regular orbits.
26#
發(fā)表于 2025-3-26 02:31:06 | 只看該作者
27#
發(fā)表于 2025-3-26 05:53:56 | 只看該作者
28#
發(fā)表于 2025-3-26 09:00:30 | 只看該作者
29#
發(fā)表于 2025-3-26 14:22:47 | 只看該作者
F. Hoffmann,B. Weigel,S. CoenenIn this chapter we cover some of the fundamentals of module theory we will need. Many results are included without proof. However, we do include a detailed proof of a result of Gaschütz which will be used throughout.
30#
發(fā)表于 2025-3-26 20:23:19 | 只看該作者
https://doi.org/10.1007/978-3-642-10789-4Here we look at extraspecial groups, their representations, and their connection to symplectic actions. We discuss in some detail Hall’s important result that characterizes p-groups for which every abelian characteristic subgroup is cyclic. These results will allow us to begin our study of quasiprimitive groups in the next chapters.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-20 09:31
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
镇康县| 临高县| 阳朔县| 噶尔县| 长葛市| 壤塘县| 成安县| 黄大仙区| 体育| 碌曲县| 象山县| 岑溪市| 特克斯县| 封开县| 镇江市| 鲁山县| 井研县| 佛山市| 神木县| 萨迦县| 鄄城县| 开封县| 钟山县| 富蕴县| 宜昌市| 永城市| 杂多县| 乌苏市| 灯塔市| 颍上县| 手游| 昌黎县| 克什克腾旗| 青冈县| 鄂伦春自治旗| 桂阳县| 四川省| 宜兴市| 池州市| 安阳市| 秦皇岛市|