找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Characterizing Groupoid C*-algebras of Non-Hausdorff étale Groupoids; Ruy Exel,David R. Pitts Book 2022 Springer Nature Switzerland AG 202

[復(fù)制鏈接]
查看: 22830|回復(fù): 35
樓主
發(fā)表于 2025-3-21 20:00:27 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Characterizing Groupoid C*-algebras of Non-Hausdorff étale Groupoids
編輯Ruy Exel,David R. Pitts
視頻videohttp://file.papertrans.cn/225/224030/224030.mp4
概述Describes C*-algebras of non-Hausdorff etale groupoids.Introduces weak Cartan inclusions and classifies them using non-Hausdorff etale groupoids.Gives surprising examples of weak Cartan inclusions ari
叢書(shū)名稱Lecture Notes in Mathematics
圖書(shū)封面Titlebook: Characterizing Groupoid C*-algebras of Non-Hausdorff étale Groupoids;  Ruy Exel,David R. Pitts Book 2022 Springer Nature Switzerland AG 202
描述.This book develops tools to handle C*-algebras arising as completions of?convolution algebras of sections of line bundles over possibly non-Hausdorff groupoids. A fundamental result of Gelfand describes commutative C*-algebras as continuous functions on locally compact Hausdorff spaces. .Kumjian, and later Renault, showed that Gelfand‘s result can be extended to include non-commutative C*-algebras containing a commutative C*-algebra. In their setting, the C*-algebras in question may be described as the completion of convolution algebras of functions on twisted Hausdorff groupoids with respect to a certain norm. However, there are many natural settings in which the Kumjian–Renault theory does not apply, in part because the groupoids which arise are not Hausdorff. In fact, non-Hausdorff groupoids have been a source of surprising counterexamples and technical difficulties for decades. Including numerous illustrative examples, this book extends the Kumjian–Renault theory toa much broader class of C*-algebras. .This work will be of interest to researchers and graduate students in the area of groupoid C*-algebras, the interface between dynamical systems and C*-algebras, and related fiel
出版日期Book 2022
關(guān)鍵詞Groupooid C*-algebra; Fell Bundle over Inverse Semigroup; Local Module; Inclusions of C*-algebras; Etale
版次1
doihttps://doi.org/10.1007/978-3-031-05513-3
isbn_softcover978-3-031-05512-6
isbn_ebook978-3-031-05513-3Series ISSN 0075-8434 Series E-ISSN 1617-9692
issn_series 0075-8434
copyrightSpringer Nature Switzerland AG 2022
The information of publication is updating

書(shū)目名稱Characterizing Groupoid C*-algebras of Non-Hausdorff étale Groupoids影響因子(影響力)




書(shū)目名稱Characterizing Groupoid C*-algebras of Non-Hausdorff étale Groupoids影響因子(影響力)學(xué)科排名




書(shū)目名稱Characterizing Groupoid C*-algebras of Non-Hausdorff étale Groupoids網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Characterizing Groupoid C*-algebras of Non-Hausdorff étale Groupoids網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Characterizing Groupoid C*-algebras of Non-Hausdorff étale Groupoids被引頻次




書(shū)目名稱Characterizing Groupoid C*-algebras of Non-Hausdorff étale Groupoids被引頻次學(xué)科排名




書(shū)目名稱Characterizing Groupoid C*-algebras of Non-Hausdorff étale Groupoids年度引用




書(shū)目名稱Characterizing Groupoid C*-algebras of Non-Hausdorff étale Groupoids年度引用學(xué)科排名




書(shū)目名稱Characterizing Groupoid C*-algebras of Non-Hausdorff étale Groupoids讀者反饋




書(shū)目名稱Characterizing Groupoid C*-algebras of Non-Hausdorff étale Groupoids讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:18:20 | 只看該作者
Examples and Open Questions,e to exhibit a light inclusion of abelian C*-algebras containing a normalizer ., with a big dense set of relative free points which nevertheless has empty interior. Consequently . is continuous but not smooth. This will also illustrate how badly behaved can the set of free points be.
板凳
發(fā)表于 2025-3-22 02:10:57 | 只看該作者
Ruy Exel,David R. PittsDescribes C*-algebras of non-Hausdorff etale groupoids.Introduces weak Cartan inclusions and classifies them using non-Hausdorff etale groupoids.Gives surprising examples of weak Cartan inclusions ari
地板
發(fā)表于 2025-3-22 05:06:26 | 只看該作者
5#
發(fā)表于 2025-3-22 10:41:30 | 只看該作者
6#
發(fā)表于 2025-3-22 15:10:43 | 只看該作者
7#
發(fā)表于 2025-3-22 18:50:52 | 只看該作者
8#
發(fā)表于 2025-3-22 21:26:55 | 只看該作者
Introduction,ng from a Cartan MASA. Their result may be thought of as a deep and far-reaching generalization of the process of describing all linear maps on a finite dimensional Hilbert space using a fixed orthonormal basis.
9#
發(fā)表于 2025-3-23 04:12:52 | 只看該作者
Examples and Open Questions,e to exhibit a light inclusion of abelian C*-algebras containing a normalizer ., with a big dense set of relative free points which nevertheless has empty interior. Consequently . is continuous but not smooth. This will also illustrate how badly behaved can the set of free points be.
10#
發(fā)表于 2025-3-23 05:37:12 | 只看該作者
Digitale Signatur und elektronische Form,ng from a Cartan MASA. Their result may be thought of as a deep and far-reaching generalization of the process of describing all linear maps on a finite dimensional Hilbert space using a fixed orthonormal basis.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 10:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
景宁| 灵石县| 靖州| 鄂伦春自治旗| 海盐县| 攀枝花市| 天长市| 安达市| 东乡族自治县| 浏阳市| 泾源县| 化德县| 西乌珠穆沁旗| 盐城市| 太仆寺旗| 武乡县| 霍州市| 尉犁县| 贵阳市| 潍坊市| 邵东县| 鹤壁市| 利辛县| 临颍县| 泰宁县| 乌鲁木齐市| 改则县| 冷水江市| 日照市| 额济纳旗| 彭州市| 塔河县| 东阿县| 梁平县| 通化县| 衡山县| 岑溪市| 高平市| 微博| 文安县| 金坛市|