找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaotic Dynamics in Nonlinear Theory; Lakshmi Burra Book 2014 Springer India 2014 Chaotic dynamics.Linked twist mappings.Nonlinear dynamic

[復(fù)制鏈接]
查看: 42164|回復(fù): 35
樓主
發(fā)表于 2025-3-21 18:28:56 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書(shū)目名稱Chaotic Dynamics in Nonlinear Theory
編輯Lakshmi Burra
視頻videohttp://file.papertrans.cn/224/223923/223923.mp4
概述Presents a novel method to prove the existence of chaotic dynamics.Discusses the methods of phase-plane analysis, results from the theory of topological horseshoes and linked-twist maps.Proves the pre
圖書(shū)封面Titlebook: Chaotic Dynamics in Nonlinear Theory;  Lakshmi Burra Book 2014 Springer India 2014 Chaotic dynamics.Linked twist mappings.Nonlinear dynamic
描述.Using phase–plane analysis, findings from the theory of topological horseshoes and linked-twist maps, this book presents a novel method to prove the existence of chaotic dynamics. In?dynamical systems, complex behavior in a?map can be indicated by showing?the existence of a Smale-horseshoe-like structure, either for the map itself or its iterates. This usually requires some assumptions about the map, such as a diffeomorphism and some hyperbolicity conditions. In this text, less stringent definitions of a horseshoe have been suggested so as to reproduce some?geometrical features typical of the Smale horseshoe, while leaving out the hyperbolicity conditions associated with it. This leads to the study of the so-called topological horseshoes. The presence of chaos-like dynamics in a vertically driven planar pendulum, a pendulum of variable length, and in other more general related equations is also proved..
出版日期Book 2014
關(guān)鍵詞Chaotic dynamics; Linked twist mappings; Nonlinear dynamics; Nonlinear second-order ODEs; Periodic solut
版次1
doihttps://doi.org/10.1007/978-81-322-2092-3
isbn_softcover978-81-322-3543-9
isbn_ebook978-81-322-2092-3
copyrightSpringer India 2014
The information of publication is updating

書(shū)目名稱Chaotic Dynamics in Nonlinear Theory影響因子(影響力)




書(shū)目名稱Chaotic Dynamics in Nonlinear Theory影響因子(影響力)學(xué)科排名




書(shū)目名稱Chaotic Dynamics in Nonlinear Theory網(wǎng)絡(luò)公開(kāi)度




書(shū)目名稱Chaotic Dynamics in Nonlinear Theory網(wǎng)絡(luò)公開(kāi)度學(xué)科排名




書(shū)目名稱Chaotic Dynamics in Nonlinear Theory被引頻次




書(shū)目名稱Chaotic Dynamics in Nonlinear Theory被引頻次學(xué)科排名




書(shū)目名稱Chaotic Dynamics in Nonlinear Theory年度引用




書(shū)目名稱Chaotic Dynamics in Nonlinear Theory年度引用學(xué)科排名




書(shū)目名稱Chaotic Dynamics in Nonlinear Theory讀者反饋




書(shū)目名稱Chaotic Dynamics in Nonlinear Theory讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:08:46 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:22:38 | 只看該作者
13.7 Health, safety and ecology,respect to oriented cells. For these maps, we prove some theorems on the existence of fixed points, periodic points, and sequences of iterates, which are chaotic in a suitable manner. Our results, motivated by the study of the Poincaré map associated to some nonlinear equations, extend and improve some recent work.
地板
發(fā)表于 2025-3-22 05:34:24 | 只看該作者
5#
發(fā)表于 2025-3-22 10:58:42 | 只看該作者
topological horseshoes and linked-twist maps.Proves the pre.Using phase–plane analysis, findings from the theory of topological horseshoes and linked-twist maps, this book presents a novel method to prove the existence of chaotic dynamics. In?dynamical systems, complex behavior in a?map can be indi
6#
發(fā)表于 2025-3-22 13:42:10 | 只看該作者
13.4 Properties of hardmetals and cermets,iology, medicine, engineering, and economics. The fact that a perfectly deterministic system can behave in an apparently unpredictable way was of interest far beyond dynamical systems. In this chapter, some concepts relevant to chaotic dynamics are introduced.
7#
發(fā)表于 2025-3-22 18:55:13 | 只看該作者
8#
發(fā)表于 2025-3-22 21:38:35 | 只看該作者
9#
發(fā)表于 2025-3-23 04:15:42 | 只看該作者
10#
發(fā)表于 2025-3-23 07:54:15 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-19 07:22
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
娄底市| 玉屏| 乌拉特后旗| 胶州市| 栖霞市| 张北县| 铜鼓县| 德保县| 通江县| 华坪县| 襄汾县| 铜山县| 洞头县| 淳安县| 永和县| 白玉县| 金门县| 偏关县| 富阳市| 雷波县| 苍南县| 佛山市| 沁源县| 石首市| 东丽区| 西峡县| 彝良县| 金湖县| 水城县| 怀安县| 德安县| 玛沁县| 道真| 台北市| 汪清县| 宁陵县| 襄城县| 屯昌县| 平南县| 新田县| 安乡县|