找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaotic Behavior in Quantum Systems; Theory and Applicati Giulio Casati Book 1985 Plenum Press, New York 1985 chaos.coherence.quantum chaos

[復(fù)制鏈接]
查看: 25589|回復(fù): 53
樓主
發(fā)表于 2025-3-21 16:24:29 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Chaotic Behavior in Quantum Systems
副標(biāo)題Theory and Applicati
編輯Giulio Casati
視頻videohttp://file.papertrans.cn/224/223920/223920.mp4
叢書名稱NATO Science Series B:
圖書封面Titlebook: Chaotic Behavior in Quantum Systems; Theory and Applicati Giulio Casati Book 1985 Plenum Press, New York 1985 chaos.coherence.quantum chaos
描述Six years ago, in June 1977, the first international conference on chaos in classical dynamical systems took place here in Como. For the first time, physicists, mathematicians, biologists, chemists, economists, and others got together to discuss the relevance of the recent progress in nonlinear classical dynamics for their own research field. Immediately after, pUblication of "Nonlinear Science Abstracts" started, which, in turn, led to the Physica D Journal and to a rapid increase of the research activity in the whole area with the creation of numerous "Nonlinear Centers" around the world. During these years great progress has been made in understanding the qualitative behavior of classical dynamical systems and now we can appreciate the beautiful complexity and variety of their motion. Meanwhile, an increasing number of scientists began to wonder whether and how such beautiful structures would persist in quantum motion. Indeed, mainly integrable systems have been previously con- sidered by Quantum Mechanics and therefore the problem is open how to describe the qualitative behavior of systems whose classical limit is non-integrable. The present meeting was organized in view of the
出版日期Book 1985
關(guān)鍵詞chaos; coherence; quantum chaos; quantum mechanics
版次1
doihttps://doi.org/10.1007/978-1-4613-2443-0
isbn_softcover978-1-4612-9485-6
isbn_ebook978-1-4613-2443-0Series ISSN 0258-1221
issn_series 0258-1221
copyrightPlenum Press, New York 1985
The information of publication is updating

書目名稱Chaotic Behavior in Quantum Systems影響因子(影響力)




書目名稱Chaotic Behavior in Quantum Systems影響因子(影響力)學(xué)科排名




書目名稱Chaotic Behavior in Quantum Systems網(wǎng)絡(luò)公開度




書目名稱Chaotic Behavior in Quantum Systems網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Chaotic Behavior in Quantum Systems被引頻次




書目名稱Chaotic Behavior in Quantum Systems被引頻次學(xué)科排名




書目名稱Chaotic Behavior in Quantum Systems年度引用




書目名稱Chaotic Behavior in Quantum Systems年度引用學(xué)科排名




書目名稱Chaotic Behavior in Quantum Systems讀者反饋




書目名稱Chaotic Behavior in Quantum Systems讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

1票 100.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:30:29 | 只看該作者
板凳
發(fā)表于 2025-3-22 01:39:29 | 只看該作者
地板
發(fā)表于 2025-3-22 04:34:31 | 只看該作者
Martin Ravallion,Michael Lokshinfold structure of classical phase space: Fragments of the invariant tori remain and may be used as a basis for EBK quantization. This is illustrated for the Hénon-Heiles problem, and for the truncated π/4- right triangular rational billiard — both nonintegrable systems. In both cases the underlying
5#
發(fā)表于 2025-3-22 11:49:28 | 只看該作者
0258-1221 st time, physicists, mathematicians, biologists, chemists, economists, and others got together to discuss the relevance of the recent progress in nonlinear classical dynamics for their own research field. Immediately after, pUblication of "Nonlinear Science Abstracts" started, which, in turn, led to
6#
發(fā)表于 2025-3-22 16:33:02 | 只看該作者
Welfare and Inequality Dominancethe distribution of eigenvalues for a domain R. or a Riemannian manifold. We also single out the manifolds for which the heat kernel and the spectrum of the Laplacian are given entirely by (the lengths of) geodesies, i.e., by classical orbits.
7#
發(fā)表于 2025-3-22 19:43:34 | 只看該作者
8#
發(fā)表于 2025-3-22 22:55:27 | 只看該作者
9#
發(fā)表于 2025-3-23 03:09:14 | 只看該作者
10#
發(fā)表于 2025-3-23 06:13:35 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 00:11
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
察哈| 正阳县| 鸡西市| 平果县| 玛曲县| 当涂县| 福建省| 集安市| 白沙| 于都县| 宜宾市| 汾阳市| 深水埗区| 大埔县| 清涧县| 青冈县| 永兴县| 确山县| 巴中市| 丰原市| 长岭县| 临汾市| 天峨县| 上思县| 东平县| 安庆市| 鸡西市| 海兴县| 镇原县| 博白县| 长岭县| 靖州| 三原县| 大足县| 仪征市| 平利县| 唐河县| 扎鲁特旗| 深水埗区| 博罗县| 承德县|