找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos, Kinetics and Nonlinear Dynamics in Fluids and Plasmas; Proceedings of a Wor Sadruddin Benkadda,George M. Zaslavsky Conference procee

[復(fù)制鏈接]
樓主: Disperse
21#
發(fā)表于 2025-3-25 03:53:53 | 只看該作者
22#
發(fā)表于 2025-3-25 08:29:52 | 只看該作者
23#
發(fā)表于 2025-3-25 13:59:32 | 只看該作者
Dynamical aspects of photon acceleration,ing by an electron plasma wave and a model for photon Fermi acceleration will be presented. Our approach will be based on the Hamiltonian canonical equations for photons. A covariant Hamiltonian description will also be discussed.
24#
發(fā)表于 2025-3-25 15:49:12 | 只看該作者
https://doi.org/10.1007/978-3-531-90062-9onstructed and the stochastic layer width is estimated. Numerical simulations have been performed and it was found that there exists a fine structure of the coherent core boundary layer, which consists of islands and subislands. We also have found the stickiness of the advected particle to the boundaries of vortex cores.
25#
發(fā)表于 2025-3-25 22:20:53 | 只看該作者
26#
發(fā)表于 2025-3-26 01:31:10 | 只看該作者
,Suivi et traitement d’une hémochromatose,e space of these traps, and the exponents of the characteristic long time tails associated with them are determined. Computational procedures for the anomalous exponents and intermediate asymptotics are discussed in many details.
27#
發(fā)表于 2025-3-26 07:34:20 | 只看該作者
28#
發(fā)表于 2025-3-26 12:18:50 | 只看該作者
Statistical mechanics of a self gravitating gas,tinuum Vlasov mean field equation. It is argued that solutions of these Vlasov-Newton equations have finite time singularities with spherical symmetry, and focusing of the energy with no mass, like focusing NLS in 3D.
29#
發(fā)表于 2025-3-26 15:10:35 | 只看該作者
30#
發(fā)表于 2025-3-26 17:48:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桑日县| 额敏县| 宜川县| 安福县| 攀枝花市| 汪清县| 城步| 大渡口区| 翁源县| 会泽县| 祁门县| 且末县| 交口县| 泸溪县| 华池县| 金秀| 铁力市| 澄江县| 南丹县| 宜良县| 墨竹工卡县| 长宁县| 晋州市| 阜宁县| 富锦市| 天祝| 射洪县| 万源市| 邹城市| 民县| 长沙市| 龙江县| 福海县| 青州市| 台南县| 菏泽市| 疏勒县| 庆元县| 湘潭市| 施甸县| 江华|