找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪(fǎng)問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos, Kinetics and Nonlinear Dynamics in Fluids and Plasmas; Proceedings of a Wor Sadruddin Benkadda,George M. Zaslavsky Conference procee

[復(fù)制鏈接]
樓主: Disperse
21#
發(fā)表于 2025-3-25 03:53:53 | 只看該作者
22#
發(fā)表于 2025-3-25 08:29:52 | 只看該作者
23#
發(fā)表于 2025-3-25 13:59:32 | 只看該作者
Dynamical aspects of photon acceleration,ing by an electron plasma wave and a model for photon Fermi acceleration will be presented. Our approach will be based on the Hamiltonian canonical equations for photons. A covariant Hamiltonian description will also be discussed.
24#
發(fā)表于 2025-3-25 15:49:12 | 只看該作者
https://doi.org/10.1007/978-3-531-90062-9onstructed and the stochastic layer width is estimated. Numerical simulations have been performed and it was found that there exists a fine structure of the coherent core boundary layer, which consists of islands and subislands. We also have found the stickiness of the advected particle to the boundaries of vortex cores.
25#
發(fā)表于 2025-3-25 22:20:53 | 只看該作者
26#
發(fā)表于 2025-3-26 01:31:10 | 只看該作者
,Suivi et traitement d’une hémochromatose,e space of these traps, and the exponents of the characteristic long time tails associated with them are determined. Computational procedures for the anomalous exponents and intermediate asymptotics are discussed in many details.
27#
發(fā)表于 2025-3-26 07:34:20 | 只看該作者
28#
發(fā)表于 2025-3-26 12:18:50 | 只看該作者
Statistical mechanics of a self gravitating gas,tinuum Vlasov mean field equation. It is argued that solutions of these Vlasov-Newton equations have finite time singularities with spherical symmetry, and focusing of the energy with no mass, like focusing NLS in 3D.
29#
發(fā)表于 2025-3-26 15:10:35 | 只看該作者
30#
發(fā)表于 2025-3-26 17:48:16 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 23:00
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
叶城县| 三穗县| 亚东县| 汉源县| 曲沃县| 唐河县| 自治县| 绍兴县| 扶余县| 土默特左旗| 香河县| 江口县| 肥城市| 广西| 周至县| 临朐县| 临沭县| 天柱县| 剑川县| 忻城县| 临武县| 日照市| 益阳市| 麻江县| 新巴尔虎右旗| 天津市| 永济市| 会同县| 贡嘎县| 潼关县| 万荣县| 含山县| 东城区| 铜山县| 旬邑县| 凤城市| 乌拉特后旗| 岗巴县| 汪清县| 关岭| 东乡|