找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos in Structural Mechanics; Jan Awrejcewicz,Vadim Anatolevich Krys‘ko Book 2008 Springer-Verlag Berlin Heidelberg 2008 Bubnov-Galerkin

[復(fù)制鏈接]
樓主: BRISK
21#
發(fā)表于 2025-3-25 04:54:28 | 只看該作者
22#
發(fā)表于 2025-3-25 09:59:25 | 只看該作者
23#
發(fā)表于 2025-3-25 13:43:46 | 只看該作者
Static Instability of Rectangular Plates,s on problems not yet satisfactorily solved. In the next section various methods devoted to stability investigations are briefly addressed, exhibiting their strong and weak points regarding applications with particular attention to computational advantages of Galerkin’s methods.
24#
發(fā)表于 2025-3-25 19:38:15 | 只看該作者
25#
發(fā)表于 2025-3-25 23:54:58 | 只看該作者
26#
發(fā)表于 2025-3-26 03:11:20 | 只看該作者
27#
發(fā)表于 2025-3-26 05:34:34 | 只看該作者
28#
發(fā)表于 2025-3-26 10:55:03 | 只看該作者
Related literature and previous research,tions of nonhomogeneous shells applying the Bubnov-Galerkin method of higher order approximations are analyzed. Section 3.3 is devoted to investigation of free nonlinear vibrations of homogeneous plates and shells with respect to any choice of control parameters. The relatively extensive Sect. 3.4 a
29#
發(fā)表于 2025-3-26 15:03:51 | 只看該作者
Construction of data set and variables,, as well as the concept of finite-time stability, is given in Sects. 4.1–4.3. Mathematical modeling of dynamical systems, problems of synchronization, chaos, and quasiperiodicity are also briefly revisited. Sections. 4.6–4.10 refer to both static and dynamic bifurcations and their numerical estimat
30#
發(fā)表于 2025-3-26 17:20:15 | 只看該作者
https://doi.org/10.1007/978-3-8350-9428-4ons of motion are derived, and then the influence of imperfection on the shell stability is studied. Both static and dynamic problems of buckling with the use of the Bubnov-Galerkin method of higher approximations are analyzed and many computational results are reported.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 11:44
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
沅陵县| 牟定县| 静宁县| 大兴区| 车致| 青冈县| 沙坪坝区| 布拖县| 乌兰察布市| 阳曲县| 射洪县| 阿坝县| 江源县| 游戏| 饶河县| 平遥县| 金阳县| 余干县| 林甸县| 靖州| 淅川县| 大新县| 大连市| 礼泉县| 壶关县| 炎陵县| 扎鲁特旗| 景泰县| 泰安市| 万载县| 出国| 双峰县| 沙田区| 上高县| 泰宁县| 三原县| 大同市| 无极县| 柘荣县| 老河口市| 铜川市|