找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos in Gravitational N-Body Systems; Proceedings of a Wor J. C. Muzzio,S. Ferraz-Mello,J. Henrard Conference proceedings 1996 Kluwer Acad

[復(fù)制鏈接]
樓主: 根深蒂固
11#
發(fā)表于 2025-3-23 10:56:52 | 只看該作者
12#
發(fā)表于 2025-3-23 15:28:56 | 只看該作者
13#
發(fā)表于 2025-3-23 21:33:00 | 只看該作者
Sinking, Tidally Stripped, Galactic Satellites,onally bound, and one of them is much larger than the other, the latter can be regarded as a satellite of the former. The study of their dynamics is somewhat simplified in this case, which presents well observed examples in nature (e.g., globular clusters). Galactic satellites suffer orbital decay d
14#
發(fā)表于 2025-3-24 00:09:17 | 只看該作者
On the Satellite Capture Problem,ed Three-Body Problem. We show that a second integral of motion furnishes an accurate description for the stability limit of retrograde satellites..The distribution of heliocentric orbital elements is studied, and possible candidates to be temporary Jovian satellites are investigated..Previous resul
15#
發(fā)表于 2025-3-24 03:22:57 | 只看該作者
16#
發(fā)表于 2025-3-24 08:48:50 | 只看該作者
17#
發(fā)表于 2025-3-24 12:27:18 | 只看該作者
Large Scale Chaos and Marginal Stability in the Solar System,s from the outer region of the solar system. All the inner planets probably experienced large scale chaotic behavior for their obliquities during their history. The Earth obliquity is presently stable only because of the presence of the Moon, and the tilt of Mars undergoes large chaotic variations f
18#
發(fā)表于 2025-3-24 18:25:51 | 只看該作者
Chaos in the Solar System,time for an orbit to make a close encounter with a perturbing planet, T., is a function of the Lyapunov time, ... The relation is log(....) = . + . log(....) where .. is a fiducial period which we have taken as the period of the principal perturber or the period of the asteroid. There are exceptions
19#
發(fā)表于 2025-3-24 21:49:31 | 只看該作者
Geometrodynamics, Chaos and Statistical Behaviour of N-Body Systems,the instability is driven by the fluctuations of some geometrical invariants, rather than by their average values; .) the most commonly used invariant has in general nothing to do with dynamic instability of realistic . systems; .) in order to evaluate correctly the relevant quantities entering thes
20#
發(fā)表于 2025-3-25 01:47:21 | 只看該作者
Geometrodynamics on Finsler Spaces,locities (possibly, on time), using a geometrical description. The manifold in which the dynamical systems live is a Finslerian space in which the conformai factor is a positively homogeneous function of first degree in the velocities (the homogeneous Lagrangian of the system). This method is a gene
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-8 23:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
新野县| 清水河县| 三原县| 富顺县| 绵竹市| 沧源| 临武县| 米林县| 壶关县| 云安县| 岳普湖县| 昌乐县| 汕头市| 琼海市| 沙坪坝区| 桑日县| 长乐市| 南丹县| 长沙市| 荥经县| 恩平市| 文山县| 广安市| 若尔盖县| 运城市| 玉屏| 乐都县| 蓬溪县| 新泰市| 和顺县| 日照市| 乌恰县| 通州市| 阳山县| 阳原县| 新干县| 咸阳市| 诏安县| 尉氏县| 乐业县| 永靖县|