找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos in Brain Function; Containing Original Erol Ba?ar Book 1990 Springer-Verlag Berlin Heidelberg 1990 brain.cognition.cortex.electroenc

[復制鏈接]
11#
發(fā)表于 2025-3-23 09:57:50 | 只看該作者
Correlation Dimensions in Various Parts of Cat and Human Brain in Different States,onlinear model (Ba?ar 1980). Later, assuming the EEG to be a chaotic attractor and mentioning the possibilities of applying the Navier-Stokes equation for comparison, we described that the EEG might reflect properties of a strange attractor (Ba?ar 1983; Ba?ar and R?schke 1983).
12#
發(fā)表于 2025-3-23 17:27:34 | 只看該作者
13#
發(fā)表于 2025-3-23 21:09:14 | 只看該作者
Dimensional Analysis of the Waking EEG, been if it had been started under slightly different initial conditions. Chaos may not be the ultimate description for a system’s irregular dynamic. As outlined by R?ssler (1983), more complex structures “beyond chaos” may await discovery.
14#
發(fā)表于 2025-3-24 00:32:12 | 只看該作者
15#
發(fā)表于 2025-3-24 02:25:58 | 只看該作者
s with more than two degrees of freedom can generate chaos, becoming unpredictable over a longer time scale. The brain is a nonlinear system par excellence. Accordingly, the concepts of chaotic dynamics have found, in the last five years, an important application in research on compound electrical a
16#
發(fā)表于 2025-3-24 09:11:01 | 只看該作者
https://doi.org/10.1007/978-1-4842-1010-9probability of the immediately underlying output cell (Freeman and Schneider 1982; Gray et al. 1984, 1986). Thus the recording of all such surface potentials, at the spatial frequency of the functional units, makes possible knowledge of the total output of the bulb without having to make massive microelectrode penetrations.
17#
發(fā)表于 2025-3-24 12:53:40 | 只看該作者
18#
發(fā)表于 2025-3-24 15:03:46 | 只看該作者
19#
發(fā)表于 2025-3-24 19:40:29 | 只看該作者
20#
發(fā)表于 2025-3-24 23:31:30 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-22 22:27
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
都昌县| 苍梧县| 嘉禾县| 江源县| 临洮县| 河西区| 丹寨县| 海阳市| 龙泉市| 福州市| 左权县| 洛扎县| 蓬莱市| 新邵县| 丰原市| 麻城市| 宁安市| 油尖旺区| 重庆市| 宜宾县| 永康市| 阿瓦提县| 雷山县| 衡水市| 胶南市| 赫章县| 沈阳市| 贵南县| 辽中县| 阿克苏市| 西乡县| 农安县| 凤翔县| 东城区| 松江区| 遂平县| 贵阳市| 碌曲县| 栾城县| 黎城县| 通化县|