找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos in Biological Systems; H. Degn,A. V. Holden,L. F. Olsen Book 1987 Springer Science+Business Media New York 1987 Peptide.biology.enzy

[復(fù)制鏈接]
樓主: 討論小組
21#
發(fā)表于 2025-3-25 07:24:31 | 只看該作者
22#
發(fā)表于 2025-3-25 09:33:09 | 只看該作者
23#
發(fā)表于 2025-3-25 13:48:10 | 只看該作者
M. P. Dobhal,V. Gupta,M. D. Lechner,R. Gupta(.) was exposed under normal physiological conditions; the intact axon was immersed in natural sea water at 14 ± 0.01°C, and stimulated with periodic trains of current pulses with the pulse intensity I and the period T. The firing modes were determined as a function of I/I. and T where I. stood for
24#
發(fā)表于 2025-3-25 19:34:34 | 只看該作者
25#
發(fā)表于 2025-3-25 21:29:07 | 只看該作者
26#
發(fā)表于 2025-3-26 01:45:00 | 只看該作者
27#
發(fā)表于 2025-3-26 04:55:05 | 只看該作者
Periodic Forcing of a Biochemical System with Multiple Modes of Oscillatory Behaviour,A two variable system that represents two enzymic reactions shows birhythmicity and multi-threshold excitability. Sinusoidal forcing of this system in the region of birhythmicity can give complex birhythmicity.
28#
發(fā)表于 2025-3-26 08:48:38 | 只看該作者
Patterns of Activity in a Reduced Ionic Model of a Cell from the Rabbit Sinoatrial Node,ion and in other physical and chemical systems in which chaotic dynamics is said to exist. However, no evidence of chaotic dynamics has yet been found in the modelling work. Recent experimental results on the sinatrial node reinforce this conclusion.
29#
發(fā)表于 2025-3-26 14:08:41 | 只看該作者
30#
發(fā)表于 2025-3-26 20:06:48 | 只看該作者
High Sensitivity Chaotic Behaviour in Sinusoidally Driven Hodgkin-Huxley Equations, study non-thermal biological effects due to small fields applied for long time..For the situation presented a small change in amplitude can induce a chaotic behaviour. The results are presented in terms of membrane voltage and maximal Lyapunov exponents.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 01:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
道真| 屯门区| 丰县| 成安县| 金沙县| 醴陵市| 朝阳市| 奈曼旗| 正宁县| 宝兴县| 故城县| 安顺市| 兴安盟| 昭通市| 辽宁省| 德庆县| 印江| 耿马| 长岭县| 汉川市| 麦盖提县| 息烽县| 马公市| 门源| 孟连| 阿图什市| 当雄县| 易门县| 阜平县| 稷山县| 虹口区| 肥乡县| 富宁县| 郴州市| 通城县| 吉安市| 莎车县| 康乐县| 常山县| 子长县| 扶沟县|