找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos in Biological Systems; H. Degn,A. V. Holden,L. F. Olsen Book 1987 Springer Science+Business Media New York 1987 Peptide.biology.enzy

[復(fù)制鏈接]
樓主: 討論小組
21#
發(fā)表于 2025-3-25 07:24:31 | 只看該作者
22#
發(fā)表于 2025-3-25 09:33:09 | 只看該作者
23#
發(fā)表于 2025-3-25 13:48:10 | 只看該作者
M. P. Dobhal,V. Gupta,M. D. Lechner,R. Gupta(.) was exposed under normal physiological conditions; the intact axon was immersed in natural sea water at 14 ± 0.01°C, and stimulated with periodic trains of current pulses with the pulse intensity I and the period T. The firing modes were determined as a function of I/I. and T where I. stood for
24#
發(fā)表于 2025-3-25 19:34:34 | 只看該作者
25#
發(fā)表于 2025-3-25 21:29:07 | 只看該作者
26#
發(fā)表于 2025-3-26 01:45:00 | 只看該作者
27#
發(fā)表于 2025-3-26 04:55:05 | 只看該作者
Periodic Forcing of a Biochemical System with Multiple Modes of Oscillatory Behaviour,A two variable system that represents two enzymic reactions shows birhythmicity and multi-threshold excitability. Sinusoidal forcing of this system in the region of birhythmicity can give complex birhythmicity.
28#
發(fā)表于 2025-3-26 08:48:38 | 只看該作者
Patterns of Activity in a Reduced Ionic Model of a Cell from the Rabbit Sinoatrial Node,ion and in other physical and chemical systems in which chaotic dynamics is said to exist. However, no evidence of chaotic dynamics has yet been found in the modelling work. Recent experimental results on the sinatrial node reinforce this conclusion.
29#
發(fā)表于 2025-3-26 14:08:41 | 只看該作者
30#
發(fā)表于 2025-3-26 20:06:48 | 只看該作者
High Sensitivity Chaotic Behaviour in Sinusoidally Driven Hodgkin-Huxley Equations, study non-thermal biological effects due to small fields applied for long time..For the situation presented a small change in amplitude can induce a chaotic behaviour. The results are presented in terms of membrane voltage and maximal Lyapunov exponents.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-10 05:15
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
泸溪县| 阿拉善盟| 张北县| 法库县| 平遥县| 临城县| 东乡族自治县| 新民市| 宜宾县| 鹿邑县| 长兴县| 华池县| 繁峙县| 红原县| 九龙城区| 奉化市| 岳普湖县| 云和县| 龙口市| 普宁市| 河津市| 文水县| 印江| 富蕴县| 宣武区| 榆社县| 桦甸市| 郎溪县| 南城县| 开封市| 秦皇岛市| 乾安县| 且末县| 霍城县| 北京市| 临高县| 华容县| 来凤县| 民县| 德江县| 肇庆市|