找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos for Engineers; Theory, Applications Tomasz Kapitaniak Book 2000Latest edition Springer-Verlag Berlin Heidelberg 2000 Analysis.Chaos.N

[復(fù)制鏈接]
樓主: 從未迷惑
11#
發(fā)表于 2025-3-23 13:46:53 | 只看該作者
Book 2000Latest editionitaniak, probably one of the most outstanding scientists working on engineering applications of Nonlinear Dynamics and Chaos today. A more careful reading reinforced this first impression....The presentation is lucid and user friendly with theory, examples, and exercises."
12#
發(fā)表于 2025-3-23 17:04:56 | 只看該作者
Tomasz KapitaniakA small but comprehensive text, which summarizes relevant mathematical background and describes applications of interest to engineers and applied scientists.Includes supplementary material:
13#
發(fā)表于 2025-3-23 19:46:22 | 只看該作者
14#
發(fā)表于 2025-3-23 23:19:22 | 只看該作者
https://doi.org/10.1007/978-3-642-57143-5Analysis; Chaos; Natur; communication; model; nonlinear dynamics; complexity
15#
發(fā)表于 2025-3-24 03:13:40 | 只看該作者
16#
發(fā)表于 2025-3-24 08:31:45 | 只看該作者
Discrete Dynamical Systems,ase of the Poincaré map introduced in the previous chapter. The dynamics of discrete dynamical systems is usually simple enough to be explained in detail. We use these systems to describe the main phenomena of nonlinear dynamics.
17#
發(fā)表于 2025-3-24 10:52:41 | 只看該作者
Fractals,oduce basic examples and properties of fractal sets starting with a classical example of the Cantor set and introduce different definitions of its dimension. Later we discuss the application of the fractal concept to dynamics and show that it is very useful in the description of strange chaotic attractors.
18#
發(fā)表于 2025-3-24 16:44:31 | 只看該作者
Routes to Chaos,s during the transition from periodic to chaotic states. The mechanism of the transition to chaos is of fundamental importance for understanding the phenomenon of chaotic behaviour. There are three main routes to chaos which can be observed in nonlinear oscillators.
19#
發(fā)表于 2025-3-24 19:52:42 | 只看該作者
20#
發(fā)表于 2025-3-24 23:41:31 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 01:51
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
鹤壁市| 肃南| 扶沟县| 谷城县| 成安县| 渝北区| 岗巴县| 滨州市| 河间市| 丁青县| 内乡县| 康乐县| 泰顺县| 云霄县| 石家庄市| 城固县| 师宗县| 招远市| 涿州市| 松桃| 绥化市| 什邡市| 中西区| 黄山市| 开阳县| 白河县| 唐河县| 盘锦市| 拜泉县| 汕头市| 乌鲁木齐县| 张家口市| 天台县| 台东县| 闸北区| 莆田市| 会理县| 尼勒克县| 思茅市| 中西区| 开远市|