找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos and Quantum Chaos; Proceedings of the E W. Dieter Heiss Conference proceedings 1992 Springer-Verlag Berlin Heidelberg 1992 Mesoscopic

[復(fù)制鏈接]
樓主: estrange
11#
發(fā)表于 2025-3-23 13:43:52 | 只看該作者
Population Ageing and Economic Growthc systems and the predictions of random-matrix theory. We shall finally discuss an important family of chaotic billiards, whose statistics does not follow any of the canonical ensembles, (GOE,GUE,...), but rather, corresponds to a new universality class.
12#
發(fā)表于 2025-3-23 16:46:19 | 只看該作者
https://doi.org/10.1007/978-3-7908-1906-9th the help of a technique that uses a generating function written as an integral over commuting and anticommuting variables. The following examples are discussed. (i) Statistical nuclear cross-sections; (ii) Chaotic quantum scattering; (iii) Conductance fluctuations in mesoscopic systems.
13#
發(fā)表于 2025-3-23 21:06:55 | 只看該作者
14#
發(fā)表于 2025-3-24 00:23:35 | 只看該作者
Stochastic scattering theory random-matrix models for fluctuations in microscopic and mesoscopic syth the help of a technique that uses a generating function written as an integral over commuting and anticommuting variables. The following examples are discussed. (i) Statistical nuclear cross-sections; (ii) Chaotic quantum scattering; (iii) Conductance fluctuations in mesoscopic systems.
15#
發(fā)表于 2025-3-24 05:13:46 | 只看該作者
0075-8450 ical andquantummechanics, studying in particular the semiclassical limit ofchaotic systems. The effects of disorder from dynamics andtheir relation to stochastic systems, quantum coherenceeffects in mesoscopic systems, and the relevant theoreticalapproaches are fruitfully combined in this volume. Th
16#
發(fā)表于 2025-3-24 06:43:44 | 只看該作者
17#
發(fā)表于 2025-3-24 13:03:19 | 只看該作者
18#
發(fā)表于 2025-3-24 15:29:09 | 只看該作者
19#
發(fā)表于 2025-3-24 20:25:29 | 只看該作者
20#
發(fā)表于 2025-3-25 02:21:45 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 19:13
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
桓仁| 闽侯县| 临清市| 屏山县| 东兰县| 甘洛县| 湖州市| 桃园县| 顺平县| 临沭县| 靖安县| 聊城市| 社旗县| 太仆寺旗| 诸城市| 玉林市| 固阳县| 武清区| 昭觉县| 石河子市| 元谋县| 南靖县| 嘉义县| 盘山县| 苍山县| 高要市| 宁夏| 陕西省| 兴国县| 娄底市| 北川| 天镇县| 平阳县| 天门市| 兴仁县| 辽阳县| 云和县| 嘉祥县| 康定县| 龙游县| 图们市|