找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos and Complex Systems; Proceedings of the 4 Stavros G. Stavrinides,Santo Banerjee,Mehmet Ozer Conference proceedings 2013 Springer-Verl

[復(fù)制鏈接]
11#
發(fā)表于 2025-3-23 10:15:09 | 只看該作者
12#
發(fā)表于 2025-3-23 14:05:49 | 只看該作者
Non-polynomial Spline Solution for a Fourth-Order Non-homogeneous Parabolic Partial Differential Eqg a non-polynomial spline method. In the solution of the problem, finite difference discretization in time, and parametric quintic spline along the spatial coordinate have been carried out. The result shows that the applied method in this paper is an applicable technique and approximates the exact s
13#
發(fā)表于 2025-3-23 21:54:02 | 只看該作者
14#
發(fā)表于 2025-3-23 23:04:53 | 只看該作者
15#
發(fā)表于 2025-3-24 04:16:03 | 只看該作者
16#
發(fā)表于 2025-3-24 10:36:35 | 只看該作者
On the Dimension of Self-Affine Fractals,space. Then there exists a unique nonempty compact set . satisfying .. . is called a . or a .. . can also be considered as the attractor of an affine iterated function system. Although such sets are basic structures in the theory of fractals, there are still many problems on them to be studied. Amon
17#
發(fā)表于 2025-3-24 12:59:50 | 只看該作者
18#
發(fā)表于 2025-3-24 17:46:59 | 只看該作者
Chaos Synchronization in a Circular Restricted Three Body Problem Under the Effect of Radiation,e effective in the stabilization of the error states at the origin, thereby, achieving synchronization between the states variables of two dynamical systems under consideration. Numerical simulations are presented to illustrate the effectiveness of the proposed control techniques using ..
19#
發(fā)表于 2025-3-24 19:14:48 | 只看該作者
20#
發(fā)表于 2025-3-25 00:40:28 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 06:49
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
含山县| 扎赉特旗| 耿马| 白山市| 巴林左旗| 广州市| 莫力| 临泉县| 旬阳县| 邵武市| 锡林郭勒盟| 中方县| 鄢陵县| 阳朔县| 石城县| 东山县| 青铜峡市| 林州市| 宜阳县| 通江县| 乐昌市| 睢宁县| 武安市| 泾川县| 江安县| 北宁市| 黄大仙区| 沅江市| 徐汇区| 榆中县| 逊克县| 荃湾区| 德惠市| 那曲县| 磴口县| 娄底市| 泸溪县| 崇左市| 云龙县| 双城市| 张家港市|