找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos Detection and Predictability; Charalampos (Haris) Skokos,Georg A. Gottwald,Jacqu Book 2016 Springer-Verlag Berlin Heidelberg 2016 Ch

[復(fù)制鏈接]
樓主: 手鐲
21#
發(fā)表于 2025-3-25 03:36:16 | 只看該作者
Der Polyneuropathie auf der Spur,f these methods in studying the global dynamics of a system, as well as their ability to identify regular motion on low dimensional tori. Finally we discuss several applications of these indices to problems originating from different scientific fields like celestial mechanics, galactic dynamics, accelerator physics and condensed matter physics.
22#
發(fā)表于 2025-3-25 11:06:33 | 只看該作者
23#
發(fā)表于 2025-3-25 14:54:31 | 只看該作者
The Smaller (SALI) and the Generalized (GALI) Alignment Indices: Efficient Methods of Chaos Detectif these methods in studying the global dynamics of a system, as well as their ability to identify regular motion on low dimensional tori. Finally we discuss several applications of these indices to problems originating from different scientific fields like celestial mechanics, galactic dynamics, accelerator physics and condensed matter physics.
24#
發(fā)表于 2025-3-25 15:53:04 | 只看該作者
25#
發(fā)表于 2025-3-25 21:51:37 | 只看該作者
26#
發(fā)表于 2025-3-26 04:11:46 | 只看該作者
27#
發(fā)表于 2025-3-26 05:30:38 | 只看該作者
28#
發(fā)表于 2025-3-26 10:51:30 | 只看該作者
Polyneuropathie mit Erfolg behandeln, series and illustrate its features by the (iterated) Hénon map, the hyper chaotic folded-towel map, the well known chaotic Lorenz-63 system, and a time continuous 6-dimensional Lorenz-96 model. These examples show that the largest Lyapunov exponent from a time series of a low-dimensional chaotic sy
29#
發(fā)表于 2025-3-26 16:12:13 | 只看該作者
30#
發(fā)表于 2025-3-26 18:57:24 | 只看該作者
0075-8450 eoretical and computational aspects of traditional methods to calculate Lyapunov exponents, as well as of modern techniques like the Fast (FLI), the Orthogonal (OFLI) a978-3-662-48408-1978-3-662-48410-4Series ISSN 0075-8450 Series E-ISSN 1616-6361
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 14:21
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
左权县| 淮阳县| 邻水| 左贡县| 江华| 大洼县| 尚义县| 社会| 蓬莱市| 开江县| 东城区| 丹寨县| 九台市| 望江县| 金湖县| 丘北县| 和静县| 红安县| 镇安县| 奈曼旗| 桂东县| 安吉县| 桐梓县| 铁岭县| 陈巴尔虎旗| 涟水县| 新津县| 阜城县| 穆棱市| 呼玛县| 马山县| 宜宾市| 靖州| 乡城县| 定西市| 无极县| 栾川县| 临颍县| 珠海市| 灌阳县| 项城市|