找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos Control; Theory and Applicati Guanrong Chen,Xinghuo Yu Book 2003 Springer-Verlag Berlin Heidelberg 2003 Chaos Anti-Control.Chaos Sync

[復(fù)制鏈接]
樓主: Bush
31#
發(fā)表于 2025-3-26 21:30:27 | 只看該作者
32#
發(fā)表于 2025-3-27 05:10:23 | 只看該作者
Control of Chaos Statistics for Optimization of DS-CDMA Systems,tion quality for several scenarios. We here briefly review the main steps in this derivation and report the corresponding theoretical prediction. In particular we show that the use of the so-called statistical approach to the study of a chaotic dynamical system allows to characterize and control the
33#
發(fā)表于 2025-3-27 08:43:28 | 只看該作者
34#
發(fā)表于 2025-3-27 13:26:46 | 只看該作者
Control of Chaos Statistics for the Generation of Timing Signals with Improved EMC,als widely employed in digital circuits, or the control pulse-trains used in switching power converters. We here focus on the methodologies where electromagnetic compatibility is enhanced by means of . rather than relying on shields and filtered cables and connectors. More specifically, the introduc
35#
發(fā)表于 2025-3-27 16:41:15 | 只看該作者
Odd Number Limitation in Delayed Feedback Control,inal DFC restricts the application to a special class of chaotic systems. So far, various methods have been developed to overcome the limitation. In this chapter, we show their key concepts to solve the problem.
36#
發(fā)表于 2025-3-27 19:06:02 | 只看該作者
37#
發(fā)表于 2025-3-28 00:49:37 | 只看該作者
Neural Network Design for Chaos Synchronization,rrent neural networks and inverse optimal control for nonlinear systems. On the basis of the last technique, chaos is first produced by a stable recurrent neural network; an adaptive recurrent neural controller is then developed for chaos synchronization.
38#
發(fā)表于 2025-3-28 05:31:34 | 只看該作者
Chaotification via Feedback: The Discrete Case,c, or to enhance the existing chaos of a chaotic system, via feedback control techniques. Only the discrete case is discussed in detail. A basic and yet “universal” approach to discrete chaotification is described, with a simple example worked out in a step-by-step fashion for illustration.
39#
發(fā)表于 2025-3-28 08:44:57 | 只看該作者
40#
發(fā)表于 2025-3-28 14:23:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 09:46
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
枣庄市| 屯昌县| 永泰县| 墨竹工卡县| 鹰潭市| 师宗县| 胶南市| 田东县| 平陆县| 桓台县| 沙田区| 油尖旺区| 祥云县| 名山县| 岳阳县| 澄迈县| 建阳市| 扬中市| 武乡县| 田林县| 邯郸市| 永昌县| 石门县| 平和县| 霍州市| 玉屏| 临朐县| 彰化县| 手游| 台山市| 乌拉特中旗| 长治县| 吉安市| 织金县| 定州市| 锡林浩特市| 承德市| 汉阴县| 加查县| 理塘县| 增城市|