找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos; A Program Collection Hans Jürgen Korsch,Hans-J?rg Jodl,Timo Hartmann Textbook 2008Latest edition Springer-Verlag Berlin Heidelberg 2

[復(fù)制鏈接]
31#
發(fā)表于 2025-3-26 23:07:18 | 只看該作者
32#
發(fā)表于 2025-3-27 03:51:34 | 只看該作者
33#
發(fā)表于 2025-3-27 07:21:36 | 只看該作者
Metasomatic Transformation of Aggregates,n contrast to the more frequently discussed linear (i.e., atypical) harmonic oscillators. Here, numerical experiments are helpful for investigating the complex dynamics, in particular by means of Poincaré sections.
34#
發(fā)表于 2025-3-27 10:50:57 | 只看該作者
35#
發(fā)表于 2025-3-27 13:44:34 | 只看該作者
36#
發(fā)表于 2025-3-27 18:41:53 | 只看該作者
37#
發(fā)表于 2025-3-27 22:09:27 | 只看該作者
Formation of Mixed Crystals in Solutions,ionless motion of a particle on a plane billiard table bounded by a closed curve [2]–[7]. The limiting cases of strictly regular (.) and strictly irregular (. or .) systems can be illustrated, as well as the typical case, which shows a complicated mixture of regular and irregular behavior. The onset
38#
發(fā)表于 2025-3-28 05:58:25 | 只看該作者
Formation of Mixed Crystals in Solutions, this billiard (compare the discussion of billiard systems in Chap. 3 ) consists of two planes symmetrically inclined with respect to a constant (e.g., gravitational) force field. The particle is reflected elastically from these planes. For simplicity, we consider the motion to be two-dimensional. W
39#
發(fā)表于 2025-3-28 08:09:50 | 只看該作者
40#
發(fā)表于 2025-3-28 12:22:51 | 只看該作者
Formation of Mixed Crystals in Solutions,ecade. Most of this work has been devoted to bounded systems. More recently, however, irregular chaotic phenomena have also been observed and studied for open (scattering) systems. For recent reviews of chaotic scattering, see the articles by Eckhardt [1], Smilansky [2], and Blümel [3]. Chaotic dyna
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-26 05:17
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
临泽县| 封开县| 中超| 醴陵市| 乐山市| 杨浦区| 论坛| 阿克苏市| 宁明县| 桦南县| 元阳县| 南靖县| 都昌县| 常山县| 太保市| 游戏| 金阳县| 徐闻县| 邮箱| 麻栗坡县| 萨嘎县| 罗田县| 宜丰县| 延边| 大田县| 万山特区| 浮梁县| 阿荣旗| 修文县| 徐水县| 韶关市| 栾城县| 兴宁市| 资兴市| 三门县| 南溪县| 伽师县| 江山市| 贵定县| 夹江县| 金川县|