找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos; A Program Collection H. J. Korsch,H.-J. Jodl Book 19941st edition Springer-Verlag Berlin Heidelberg 1994 Chaostheorie.Fractals.Frakt

[復制鏈接]
樓主: solidity
21#
發(fā)表于 2025-3-25 06:18:28 | 只看該作者
22#
發(fā)表于 2025-3-25 10:37:06 | 只看該作者
23#
發(fā)表于 2025-3-25 12:11:34 | 只看該作者
Book 19941st editiontudents in physics, mathematics, and engineering will find a thorough intoduction to fundamentals and applications in this field. Many numerical experiments and suggestions for further studies help the reader to become familiar with this fascinationg topic.
24#
發(fā)表于 2025-3-25 18:59:12 | 只看該作者
Nonlinear Dynamics and Deterministic Chaos,e book and are written at a level suitable for advanced undergraduate students. An understanding and interpretation of the numerical results is, however, impossible without a knowledge of the relevant theory.
25#
發(fā)表于 2025-3-25 21:37:43 | 只看該作者
Billiard Systems,t of chaos follows the so-called Poincaré scenario, i.e. the consecutive destruction of invariant tori for increasing deviation from integrability as described by the KAM-theory and the Poincaré-Birkhoff theorem discussed in Chap. 2.
26#
發(fā)表于 2025-3-26 02:26:42 | 只看該作者
27#
發(fā)表于 2025-3-26 05:12:43 | 只看該作者
28#
發(fā)表于 2025-3-26 09:41:23 | 只看該作者
29#
發(fā)表于 2025-3-26 14:02:31 | 只看該作者
https://doi.org/10.1007/978-3-642-37179-0e book and are written at a level suitable for advanced undergraduate students. An understanding and interpretation of the numerical results is, however, impossible without a knowledge of the relevant theory.
30#
發(fā)表于 2025-3-26 19:34:47 | 只看該作者
S.-H. Hyon,K. Jamshidi,Y. Ikadat of chaos follows the so-called Poincaré scenario, i.e. the consecutive destruction of invariant tori for increasing deviation from integrability as described by the KAM-theory and the Poincaré-Birkhoff theorem discussed in Chap. 2.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 22:40
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復 返回頂部 返回列表
马关县| 吉林市| 进贤县| 青海省| 新乐市| 阳原县| 游戏| 高州市| 宜丰县| 嵩明县| 白水县| 沿河| 额尔古纳市| 海丰县| 北流市| 平舆县| 枣阳市| 松潘县| 永城市| 南京市| 鄂伦春自治旗| 海兴县| 东光县| 西安市| 许昌县| 杭锦旗| 黔西县| 资兴市| 泸定县| 钦州市| 郎溪县| 习水县| 腾冲县| 贵南县| 准格尔旗| 荥阳市| 浦北县| 东城区| 五莲县| 霍邱县| 济源市|