找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos; A Program Collection H. J. Korsch,H.-J. Jodl Book 19941st edition Springer-Verlag Berlin Heidelberg 1994 Chaostheorie.Fractals.Frakt

[復(fù)制鏈接]
樓主: solidity
21#
發(fā)表于 2025-3-25 06:18:28 | 只看該作者
22#
發(fā)表于 2025-3-25 10:37:06 | 只看該作者
23#
發(fā)表于 2025-3-25 12:11:34 | 只看該作者
Book 19941st editiontudents in physics, mathematics, and engineering will find a thorough intoduction to fundamentals and applications in this field. Many numerical experiments and suggestions for further studies help the reader to become familiar with this fascinationg topic.
24#
發(fā)表于 2025-3-25 18:59:12 | 只看該作者
Nonlinear Dynamics and Deterministic Chaos,e book and are written at a level suitable for advanced undergraduate students. An understanding and interpretation of the numerical results is, however, impossible without a knowledge of the relevant theory.
25#
發(fā)表于 2025-3-25 21:37:43 | 只看該作者
Billiard Systems,t of chaos follows the so-called Poincaré scenario, i.e. the consecutive destruction of invariant tori for increasing deviation from integrability as described by the KAM-theory and the Poincaré-Birkhoff theorem discussed in Chap. 2.
26#
發(fā)表于 2025-3-26 02:26:42 | 只看該作者
27#
發(fā)表于 2025-3-26 05:12:43 | 只看該作者
28#
發(fā)表于 2025-3-26 09:41:23 | 只看該作者
29#
發(fā)表于 2025-3-26 14:02:31 | 只看該作者
https://doi.org/10.1007/978-3-642-37179-0e book and are written at a level suitable for advanced undergraduate students. An understanding and interpretation of the numerical results is, however, impossible without a knowledge of the relevant theory.
30#
發(fā)表于 2025-3-26 19:34:47 | 只看該作者
S.-H. Hyon,K. Jamshidi,Y. Ikadat of chaos follows the so-called Poincaré scenario, i.e. the consecutive destruction of invariant tori for increasing deviation from integrability as described by the KAM-theory and the Poincaré-Birkhoff theorem discussed in Chap. 2.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 16:25
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
横山县| 金溪县| 武威市| 观塘区| 保定市| 高青县| 图们市| 黑河市| 卫辉市| 凤庆县| 乐业县| 沿河| 乌恰县| 吴桥县| 潜山县| 磴口县| 秭归县| 涿鹿县| 宁化县| 永城市| 沽源县| 丰顺县| 文昌市| 定西市| 台东市| 包头市| 绍兴县| 沂南县| 宝丰县| 罗定市| 松潘县| 安图县| 深州市| 阳城县| 密云县| 天台县| 介休市| 吴堡县| 沙雅县| 新竹市| 葵青区|