找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos; A Program Collection H. J. Korsch,H.-J. Jodl Book 19992nd edition Springer-Verlag Berlin Heidelberg 1999 Chaostheorie.Fractals.Frakt

[復(fù)制鏈接]
查看: 31010|回復(fù): 54
樓主
發(fā)表于 2025-3-21 16:42:04 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Chaos
副標(biāo)題A Program Collection
編輯H. J. Korsch,H.-J. Jodl
視頻videohttp://file.papertrans.cn/224/223860/223860.mp4
概述Unique collection of programs on chaos theory and its simulation, all now rewritten in C++ (and two versions - Windows and Linux).Can be used as primer.Ideal for case studies on chaos theory.New chapt
圖書封面Titlebook: Chaos; A Program Collection H. J. Korsch,H.-J. Jodl Book 19992nd edition Springer-Verlag Berlin Heidelberg 1999 Chaostheorie.Fractals.Frakt
描述.Chaos: A Program Collection for the PC .presents an outstanding selection of executable programs with introductory texts to chaos theory and its simulation. Students in physics, mathematics, and engineering will find a thorough introduction to fundamentals and applications in this field. Many numerical experiments and suggestions for further studies help the reader to become familiar with this fascinating topic. The second edition includes one CD-ROM, the executable programs are Windows 95 compatible.
出版日期Book 19992nd edition
關(guān)鍵詞Chaostheorie; Fractals; Fraktale; Nichtlineare Dynamik; Programm; Scattering; Streuph?nomene; chaos theory;
版次2
doihttps://doi.org/10.1007/978-3-662-03866-6
isbn_ebook978-3-662-03866-6
copyrightSpringer-Verlag Berlin Heidelberg 1999
The information of publication is updating

書目名稱Chaos影響因子(影響力)




書目名稱Chaos影響因子(影響力)學(xué)科排名




書目名稱Chaos網(wǎng)絡(luò)公開度




書目名稱Chaos網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Chaos被引頻次




書目名稱Chaos被引頻次學(xué)科排名




書目名稱Chaos年度引用




書目名稱Chaos年度引用學(xué)科排名




書目名稱Chaos讀者反饋




書目名稱Chaos讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

1票 100.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 23:03:40 | 只看該作者
板凳
發(fā)表于 2025-3-22 03:16:53 | 只看該作者
地板
發(fā)表于 2025-3-22 06:13:32 | 只看該作者
5#
發(fā)表于 2025-3-22 12:11:30 | 只看該作者
Chaotic Scattering,ecade. Most of this work has been devoted to bounded systems. More recently, however, irregular chaotic phenomena have also been observed and studied for open (scattering) systems. For recent reviews of chaotic scattering, see the articles by Eckhardt [6. 1], Smilansky [6.2], and Blümel [6.3]. Chaot
6#
發(fā)表于 2025-3-22 16:11:37 | 只看該作者
7#
發(fā)表于 2025-3-22 17:03:57 | 只看該作者
The Duffing Oscillator, chaotic nonlinear dynamics in the wake of early studies by the engineer Georg Duffing [8. 1]. The system has been successfully used to model a variety of physical processes such as stiffening springs, beam buckling, nonlinear electronic circuits, superconducting Josephson parametric amplifiers, and
8#
發(fā)表于 2025-3-22 22:49:15 | 只看該作者
9#
發(fā)表于 2025-3-23 05:09:39 | 只看該作者
Nonlinear Electronic Circuits,e easily handled for further analysis. Such an electronic circuit is a physical system of the real world. It is, however, on account of its electronic nature, also similar to a computing device and, therefore, electronic circuits are also used as analog computers to model more elaborate experimental
10#
發(fā)表于 2025-3-23 06:46:52 | 只看該作者
Mandelbrot and Julia Sets,cause they are discrete, such maps are much simpler to study (both numerically and analytically) than continuous differential equations. In general, the maps can be written as . where . = (..,..., ..) is the state vector of the system — for example, a vector in N-dimensional phase space — and . = (.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-18 23:39
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
成武县| 保山市| 五河县| 昭平县| 息烽县| 望谟县| 阿鲁科尔沁旗| 白朗县| 乐东| 巩义市| 满城县| 澳门| 弥勒县| 三都| 汤原县| 崇州市| 莱芜市| 仙游县| 铁岭县| 兴化市| 九台市| 曲麻莱县| 关岭| 遂平县| 新平| 兴文县| 横峰县| 蒙城县| 闻喜县| 湖北省| 巍山| 盐山县| 宣城市| 枣阳市| 娱乐| 大同市| 西峡县| 黄平县| 库尔勒市| 固镇县| 凌云县|