找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos; Poincaré Seminar 201 Bertrand Duplantier,Stéphane Nonnenmacher,Vincent Book 2013 Springer Basel 2013 Riemann zeta-function.billiard

[復(fù)制鏈接]
樓主: Madison
11#
發(fā)表于 2025-3-23 10:46:02 | 只看該作者
https://doi.org/10.1007/978-3-0348-0697-8Riemann zeta-function; billiards; celestial mechanics; chaotic dynamos; quantum chaos; random matrix theo
12#
發(fā)表于 2025-3-23 14:49:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:38:10 | 只看該作者
1544-9998 ational lectures given at the Institut Henri Poincaré in ParThis twelfth volume in the Poincaré Seminar Series presents a complete and interdisciplinary perspective on the concept of Chaos, both in classical mechanics in its deterministic version, and in quantum mechanics. This book expounds some of
14#
發(fā)表于 2025-3-24 00:50:01 | 只看該作者
https://doi.org/10.1007/978-3-642-02890-8lent velocity field that involves a wide range of interacting scales, we observe that its dynamics results from a small number of interacting modes. We present a model that describes both periodic and random reversals of the magnetic field and compare it with the experimental results and direct numerical simulations.
15#
發(fā)表于 2025-3-24 04:32:00 | 只看該作者
pVT data of polyethylene in propane,gous formula that connects the Riemann zeros and the primes. We also review the role played by Random Matrix Theory in both quantum chaos and the theory of the zeta function. The parallels we review are conjectural and still far from being understood, but the ideas have led to substantial progress in both areas.
16#
發(fā)表于 2025-3-24 09:12:18 | 只看該作者
Chaotic Dynamos Generated by Fully Turbulent Flows,lent velocity field that involves a wide range of interacting scales, we observe that its dynamics results from a small number of interacting modes. We present a model that describes both periodic and random reversals of the magnetic field and compare it with the experimental results and direct numerical simulations.
17#
發(fā)表于 2025-3-24 12:51:31 | 只看該作者
18#
發(fā)表于 2025-3-24 16:00:16 | 只看該作者
The Lorenz Attractor, a Paradigm for Chaos,teps in the historical development of the concept of chaos in dynamical systems, from the mathematical point of view. Then, I would like to present the present status of the Lorenz attractor in the panorama of the theory, as we see it Today.
19#
發(fā)表于 2025-3-24 20:45:25 | 只看該作者
,Discrete Graphs – A Paradigm Model for Quantum Chaos,tics with random matrix theory, the role of cycles and their statistics, and percolation of level sets of the eigenvectors. These concepts will be explained and reviewed with reference to the original publications for further details.
20#
發(fā)表于 2025-3-25 02:57:22 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-6 22:08
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
栾川县| 临朐县| 浦北县| 如东县| 尚志市| 时尚| 攀枝花市| 塔河县| 丰城市| 中方县| 长海县| 璧山县| 西吉县| 绩溪县| 遂川县| 兴山县| 东光县| 天水市| 平潭县| 汉中市| 义乌市| 维西| 瑞昌市| 七台河市| 通州区| 革吉县| 大新县| 分宜县| 夹江县| 兴国县| 宜宾市| 盐城市| 独山县| 安福县| 鄂州市| 常德市| 玛纳斯县| 鄂托克前旗| 广安市| 芒康县| 临沭县|