找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chaos; Poincaré Seminar 201 Bertrand Duplantier,Stéphane Nonnenmacher,Vincent Book 2013 Springer Basel 2013 Riemann zeta-function.billiard

[復制鏈接]
樓主: Madison
11#
發(fā)表于 2025-3-23 10:46:02 | 只看該作者
https://doi.org/10.1007/978-3-0348-0697-8Riemann zeta-function; billiards; celestial mechanics; chaotic dynamos; quantum chaos; random matrix theo
12#
發(fā)表于 2025-3-23 14:49:22 | 只看該作者
13#
發(fā)表于 2025-3-23 20:38:10 | 只看該作者
1544-9998 ational lectures given at the Institut Henri Poincaré in ParThis twelfth volume in the Poincaré Seminar Series presents a complete and interdisciplinary perspective on the concept of Chaos, both in classical mechanics in its deterministic version, and in quantum mechanics. This book expounds some of
14#
發(fā)表于 2025-3-24 00:50:01 | 只看該作者
https://doi.org/10.1007/978-3-642-02890-8lent velocity field that involves a wide range of interacting scales, we observe that its dynamics results from a small number of interacting modes. We present a model that describes both periodic and random reversals of the magnetic field and compare it with the experimental results and direct numerical simulations.
15#
發(fā)表于 2025-3-24 04:32:00 | 只看該作者
pVT data of polyethylene in propane,gous formula that connects the Riemann zeros and the primes. We also review the role played by Random Matrix Theory in both quantum chaos and the theory of the zeta function. The parallels we review are conjectural and still far from being understood, but the ideas have led to substantial progress in both areas.
16#
發(fā)表于 2025-3-24 09:12:18 | 只看該作者
Chaotic Dynamos Generated by Fully Turbulent Flows,lent velocity field that involves a wide range of interacting scales, we observe that its dynamics results from a small number of interacting modes. We present a model that describes both periodic and random reversals of the magnetic field and compare it with the experimental results and direct numerical simulations.
17#
發(fā)表于 2025-3-24 12:51:31 | 只看該作者
18#
發(fā)表于 2025-3-24 16:00:16 | 只看該作者
The Lorenz Attractor, a Paradigm for Chaos,teps in the historical development of the concept of chaos in dynamical systems, from the mathematical point of view. Then, I would like to present the present status of the Lorenz attractor in the panorama of the theory, as we see it Today.
19#
發(fā)表于 2025-3-24 20:45:25 | 只看該作者
,Discrete Graphs – A Paradigm Model for Quantum Chaos,tics with random matrix theory, the role of cycles and their statistics, and percolation of level sets of the eigenvectors. These concepts will be explained and reviewed with reference to the original publications for further details.
20#
發(fā)表于 2025-3-25 02:57:22 | 只看該作者
 關于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學 Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經驗總結 SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學 Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 21:58
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權所有 All rights reserved
快速回復 返回頂部 返回列表
犍为县| 庆阳市| 宜宾县| 清徐县| 招远市| 淄博市| 简阳市| 阳江市| 林芝县| 合阳县| 当雄县| 鹤庆县| 八宿县| 石城县| 遂川县| 齐齐哈尔市| 永和县| 梧州市| 沾益县| 宜春市| 克拉玛依市| 精河县| 营山县| 杭锦旗| 中山市| 仁布县| 中超| 新兴县| 黄龙县| 澳门| 新平| 宜春市| 雅江县| 南投市| 保定市| 安泽县| 晋城| 台中市| 吉首市| 眉山市| 满洲里市|