找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Chain Conditions in Commutative Rings; Ali Benhissi Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license

[復(fù)制鏈接]
查看: 40807|回復(fù): 35
樓主
發(fā)表于 2025-3-21 17:07:44 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Chain Conditions in Commutative Rings
編輯Ali Benhissi
視頻videohttp://file.papertrans.cn/224/223379/223379.mp4
概述Gathers recent findings on chain conditions in commutative algebra, previously only available in papers.Offers detailed proofs, with examples, solved exercises and references in self-contained chapter
圖書封面Titlebook: Chain Conditions in Commutative Rings;  Ali Benhissi Textbook 2022 The Editor(s) (if applicable) and The Author(s), under exclusive license
描述This book gathers, in a beautifully structured way, recent findings on chain conditions in commutative algebra that were previously only available in papers. The majority of chapters are self-contained, and all include detailed proofs, a wealth of examples and solved exercises, and a complete reference list. The topics covered include S-Noetherian, S-Artinian, Nonnil-Noetherian, and Strongly Hopfian properties on commutative rings and their transfer to extensions such as polynomial and power series rings, and more. Though primarily intended for readers with a background in commutative rings, modules, polynomials and power series extension rings, the book can also be used as a reference guide to support graduate-level algebra courses, or as a starting point for further research.
出版日期Textbook 2022
關(guān)鍵詞S-Noetherian; S-Artinian; Nonnil-Noetherian; Strongly Hopfian; polynomials; power series; almost principal
版次1
doihttps://doi.org/10.1007/978-3-031-09898-7
isbn_softcover978-3-031-10147-2
isbn_ebook978-3-031-09898-7
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Chain Conditions in Commutative Rings影響因子(影響力)




書目名稱Chain Conditions in Commutative Rings影響因子(影響力)學(xué)科排名




書目名稱Chain Conditions in Commutative Rings網(wǎng)絡(luò)公開度




書目名稱Chain Conditions in Commutative Rings網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Chain Conditions in Commutative Rings被引頻次




書目名稱Chain Conditions in Commutative Rings被引頻次學(xué)科排名




書目名稱Chain Conditions in Commutative Rings年度引用




書目名稱Chain Conditions in Commutative Rings年度引用學(xué)科排名




書目名稱Chain Conditions in Commutative Rings讀者反饋




書目名稱Chain Conditions in Commutative Rings讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:39:52 | 只看該作者
http://image.papertrans.cn/c/image/223379.jpg
板凳
發(fā)表于 2025-3-22 01:43:33 | 只看該作者
https://doi.org/10.1007/978-3-031-09898-7S-Noetherian; S-Artinian; Nonnil-Noetherian; Strongly Hopfian; polynomials; power series; almost principal
地板
發(fā)表于 2025-3-22 05:53:48 | 只看該作者
978-3-031-10147-2The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
5#
發(fā)表于 2025-3-22 10:38:23 | 只看該作者
Tables 23 - 32, Figs. 90 - 114,ed in many areas including commutative algebra and algebraic geometry. The Noetherian property was originally due to the mathematician Noether who first considered a relation between the ascending chain condition on ideals and the finitely generatedness of ideals.
6#
發(fā)表于 2025-3-22 13:07:33 | 只看該作者
Tables 23 - 32, Figs. 90 - 114,domorphism . of ., the sequence . .???. ..??… is stationary. The ring . is strongly Hopfian if it is strongly Hopfian as an .-module. This is also equivalent to the fact that for each .?∈?., the sequence .(.)???.(..)??… is stationary. In this chapter, we study this notion and its transfer to differe
7#
發(fā)表于 2025-3-22 20:47:33 | 只看該作者
8#
發(fā)表于 2025-3-23 00:29:47 | 只看該作者
9#
發(fā)表于 2025-3-23 03:37:04 | 只看該作者
Tables 23 - 32, Figs. 90 - 114,In this chapter, all the rings considered are commutative with unity. A multiplicative set contains 1 and does not contain 0.
10#
發(fā)表于 2025-3-23 09:29:52 | 只看該作者
1.0.3 List of symbols and abbreviations,Let . be an integral domain. In this chapter, we define a notion of almost principal for the domain .[.]. Then we characterize those . with this property. All the rings considered in this chapter are commutative with identity.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-20 00:56
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
太仆寺旗| 灵台县| 阿坝县| 宣恩县| 平安县| 昭觉县| 双辽市| 内江市| 乡宁县| 铁岭市| 徐闻县| 尼勒克县| 广东省| 塔河县| 娄烦县| 台东市| 电白县| 方山县| 安宁市| 巩义市| 宜春市| 贺兰县| 景德镇市| 宕昌县| 靖宇县| 如东县| 滁州市| 临颍县| 香格里拉县| 海兴县| 丰县| 长丰县| 安远县| 新密市| 北川| 上思县| 饶河县| 施秉县| 永泰县| 石门县| 焉耆|