找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Certificates of Positivity for Real Polynomials; Theory, Practice, an Victoria Powers Book 2021 The Editor(s) (if applicable) and The Autho

[復(fù)制鏈接]
查看: 20705|回復(fù): 52
樓主
發(fā)表于 2025-3-21 17:09:00 | 只看該作者 |倒序瀏覽 |閱讀模式
書目名稱Certificates of Positivity for Real Polynomials
副標題Theory, Practice, an
編輯Victoria Powers
視頻videohttp://file.papertrans.cn/224/223347/223347.mp4
概述Includes extensive background information for increased accessibility.Contains discussion of computational and algorithmic aspects of the subject.Features an extensive bibliography
叢書名稱Developments in Mathematics
圖書封面Titlebook: Certificates of Positivity for Real Polynomials; Theory, Practice, an Victoria Powers Book 2021 The Editor(s) (if applicable) and The Autho
描述.This book collects and explains the many theorems concerning the existence of certificates of positivity for polynomials that are positive globally or on semialgebraic sets. A certificate of positivity for a real polynomial is an algebraic identity that gives an immediate proof of a positivity condition for the polynomial.?Certificates of positivity have their roots in fundamental work of David Hilbert from the late 19.th.?century on positive polynomials and sums of squares. Because of the numerous applications of certificates of positivity in mathematics, applied mathematics, engineering, and other fields, it is desirable to have methods for finding, describing, and characterizing them. For many of the topics covered in this book, appropriate algorithms, computational methods, and applications are discussed...This volume contains a comprehensive, accessible, up-to-date treatment of certificates of positivity, written by an expert in the field. It provides an overview of both the theory and computational aspects of the subject, and includes many of the recent and exciting developments in the area. Background information is given so that beginning graduate students and researchers
出版日期Book 2021
關(guān)鍵詞semialgebraic sets and related spaces; sums of squares; ternary quartics; Polya‘s theorem; Scheiderer‘s
版次1
doihttps://doi.org/10.1007/978-3-030-85547-5
isbn_softcover978-3-030-85549-9
isbn_ebook978-3-030-85547-5Series ISSN 1389-2177 Series E-ISSN 2197-795X
issn_series 1389-2177
copyrightThe Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerl
The information of publication is updating

書目名稱Certificates of Positivity for Real Polynomials影響因子(影響力)




書目名稱Certificates of Positivity for Real Polynomials影響因子(影響力)學(xué)科排名




書目名稱Certificates of Positivity for Real Polynomials網(wǎng)絡(luò)公開度




書目名稱Certificates of Positivity for Real Polynomials網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Certificates of Positivity for Real Polynomials被引頻次




書目名稱Certificates of Positivity for Real Polynomials被引頻次學(xué)科排名




書目名稱Certificates of Positivity for Real Polynomials年度引用




書目名稱Certificates of Positivity for Real Polynomials年度引用學(xué)科排名




書目名稱Certificates of Positivity for Real Polynomials讀者反饋




書目名稱Certificates of Positivity for Real Polynomials讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

1票 100.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

0票 0.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 22:09:08 | 只看該作者
Sums of Squares and Positive Polynomials, polynomials and sums of squares, which underlies everything else in the book. This theory has its origins in the work of Hilbert from the late 19th century; Hilbert’s interest in these topics appears to have started when he was an officially appointed “opponent” for Minkowski’s thesis defense on July 30, 1885.
板凳
發(fā)表于 2025-3-22 01:41:33 | 只看該作者
地板
發(fā)表于 2025-3-22 07:24:44 | 只看該作者
Positive Polynomials with Special Structure, that are invariant under a permutation of their variables, and some whose associated Newton polytope is of a special type. For polynomials with special structure, we discuss conditions which imply or characterize when the polynomial is psd, and when it is sos.
5#
發(fā)表于 2025-3-22 11:27:30 | 只看該作者
Certificates of Positivity for Real Polynomials978-3-030-85547-5Series ISSN 1389-2177 Series E-ISSN 2197-795X
6#
發(fā)表于 2025-3-22 16:07:48 | 只看該作者
Sind Personen mit Demenz palliativbedürftig?ince the square of a real number is always nonnegative. This simple but powerful fact and generalizations of it underlie a large body of theoretical and computational results concerning positive polynomials and sums of squares.
7#
發(fā)表于 2025-3-22 19:46:49 | 只看該作者
8#
發(fā)表于 2025-3-22 23:28:53 | 只看該作者
9#
發(fā)表于 2025-3-23 01:29:37 | 只看該作者
10#
發(fā)表于 2025-3-23 09:31:03 | 只看該作者
https://doi.org/10.1007/978-3-030-85547-5semialgebraic sets and related spaces; sums of squares; ternary quartics; Polya‘s theorem; Scheiderer‘s
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-16 19:55
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
澎湖县| 赞皇县| 资阳市| 万安县| 滁州市| 广元市| 思南县| 延吉市| 和平县| 介休市| 恭城| 于田县| 共和县| 南宁市| 商丘市| 额尔古纳市| 于都县| 望江县| 鹰潭市| 盐山县| 额尔古纳市| 邢台县| 青神县| 永福县| 陈巴尔虎旗| 永昌县| 蛟河市| 淄博市| 巨野县| 萨嘎县| 瑞安市| 兴仁县| 天祝| 会东县| 永靖县| 嘉义市| 天水市| 商南县| 乌什县| 蒲江县| 龙山县|