找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cerebral Aneurysm Detection and Analysis; First Challenge, CAD Anja Hennemuth,Leonid Goubergrits,Jan-Martin Kuhni Conference proceedings 20

[復(fù)制鏈接]
樓主: Lampoon
21#
發(fā)表于 2025-3-25 04:31:41 | 只看該作者
22#
發(fā)表于 2025-3-25 08:14:30 | 只看該作者
23#
發(fā)表于 2025-3-25 14:58:05 | 只看該作者
https://doi.org/10.1007/978-3-658-42014-7U-Net, pretrained 3D U-Net and pretrained 3D Attention U-Net are 0.881, 0.884, 0.890 and 0.907, respectively. The experimental results show that the use of attention gate and Models Genesis can significantly improve the performance of U-Net model in segmenting aneurysms. This work achieved rank one in CADA 2020- Aneurysm Segmentation Challenge.
24#
發(fā)表于 2025-3-25 19:43:44 | 只看該作者
25#
發(fā)表于 2025-3-25 21:51:39 | 只看該作者
Heidi M?ller,Thomas Giernalczyksm. The proposed network was trained on the . challenge set of 109 aneurysms. The proposed method achieves an accuracy of 0.64 and an F2-score of 0.73 on the private . challenge test set of 30 aneurysms.
26#
發(fā)表于 2025-3-26 02:29:11 | 只看該作者
Deep Learning-Based 3D U-Net Cerebral Aneurysm Detectiont solutions, with a drastically reduced false-positive rate per patient. The described solution is almost entirely accurate on structures larger than 5?mm in diameter but shows difficulties with smaller aneurysms. We show an F2-score of 0.84 and a false-positive rate of 0.41 on a private test set.
27#
發(fā)表于 2025-3-26 06:43:15 | 只看該作者
3D Attention U-Net with Pretraining: A Solution to CADA-Aneurysm Segmentation ChallengeU-Net, pretrained 3D U-Net and pretrained 3D Attention U-Net are 0.881, 0.884, 0.890 and 0.907, respectively. The experimental results show that the use of attention gate and Models Genesis can significantly improve the performance of U-Net model in segmenting aneurysms. This work achieved rank one in CADA 2020- Aneurysm Segmentation Challenge.
28#
發(fā)表于 2025-3-26 10:59:19 | 只看該作者
CADA Challenge: Rupture Risk Assessment Using Computational Fluid Dynamicsults of the DNS may serve as inputs for data driven methods to identify qualitative maps of hemodynamic quantities in aneurysms. In this article we report the results of CFD and discuss hypotheses associating the flow characteristics with the rupture risk of aneurysms.
29#
發(fā)表于 2025-3-26 12:58:18 | 只看該作者
30#
發(fā)表于 2025-3-26 20:48:56 | 只看該作者
0302-9743 Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2020, in October 2020. The conference was planned to take place in Lima, Peru, and took place virtually due to the COVID-19 pandemic. .The 9 regular papers presented in this volume, together with an overview and one in
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-25 12:18
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
林口县| 慈利县| 武强县| 抚州市| 崇礼县| 崇义县| 莲花县| 玛多县| 开封县| 陆良县| 应用必备| 葫芦岛市| 康乐县| 上犹县| 尉氏县| 施甸县| 汾西县| 若尔盖县| 南靖县| 年辖:市辖区| 瓦房店市| 昌邑市| 凤翔县| 宜春市| 和田市| 大宁县| 唐山市| 桦川县| 迁安市| 大名县| 抚松县| 郑州市| 山丹县| 石柱| 定陶县| 民权县| 虞城县| 万州区| 凤庆县| 扶风县| 昌宁县|