找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Cellular Automata and Groups; Tullio Ceccherini-Silberstein,Michel Coornaert Textbook 2023Latest edition The Editor(s) (if applicable) and

[復(fù)制鏈接]
樓主: Systole
21#
發(fā)表于 2025-3-25 07:06:18 | 只看該作者
22#
發(fā)表于 2025-3-25 10:12:15 | 只看該作者
Surjunctive Groups,Surjunctive groups are defined in Sect. 3.1 as being the groups on which all injective cellular automata with finite alphabet are surjective. In Sect. 3.2 it is shown that every subgroup of a surjunctive group is a surjunctive group and that every locally surjunctive group is surjunctive.
23#
發(fā)表于 2025-3-25 14:25:28 | 只看該作者
Amenable Groups,This chapter is devoted to the class of amenable groups. This is a class of groups which plays an important role in many areas of mathematics such as ergodic theory, harmonic analysis, representation theory, dynamical systems, geometric group theory, probability theory and statistics.
24#
發(fā)表于 2025-3-25 17:06:58 | 只看該作者
25#
發(fā)表于 2025-3-25 21:26:03 | 只看該作者
Finitely Generated Groups,This chapter is devoted to the growth and amenability of finitely generated groups. The choice of a finite symmetric generating subset for a finitely generated group defines a word metric on the group and a labelled graph, which is called a Cayley graph.
26#
發(fā)表于 2025-3-26 03:49:31 | 只看該作者
27#
發(fā)表于 2025-3-26 05:15:55 | 只看該作者
28#
發(fā)表于 2025-3-26 11:40:17 | 只看該作者
Cellular Automata,n is defined as being a map from the group into the alphabet. Thus, a configuration is a way of attaching an element of the alphabet to each element of the group. There is a natural action of the group on the set of configurations which is called the shift action (see Sect. 1.1).
29#
發(fā)表于 2025-3-26 15:09:41 | 只看該作者
Linear Cellular Automata,induced vector space structure on the set of configurations. If the alphabet vector space and the underlying group are fixed, the set of linear cellular automata is a subalgebra of the endomorphism algebra of the configuration space (Proposition 8.1.4).
30#
發(fā)表于 2025-3-26 16:53:11 | 只看該作者
7樓
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點評 投稿經(jīng)驗總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-12 22:59
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
合肥市| 呼和浩特市| 弥渡县| 札达县| 南丹县| 罗江县| 东乡族自治县| 庆阳市| 固阳县| 松江区| 岢岚县| 新绛县| 马公市| 南城县| 凤翔县| 安徽省| 剑阁县| 呼玛县| 盐源县| 石台县| 渭南市| 无棣县| 祁连县| 扎鲁特旗| 曲靖市| 义乌市| 长沙市| 麦盖提县| 茂名市| 耿马| 兴业县| 黄大仙区| 乐至县| 吉隆县| 介休市| 姜堰市| 京山县| 九龙坡区| 区。| 景泰县| 朝阳市|