找回密碼
 To register

QQ登錄

只需一步,快速開(kāi)始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cellular Automata and Discrete Complex Systems; 19th International W Jarkko Kari,Martin Kutrib,Andreas Malcher Conference proceedings 2013

[復(fù)制鏈接]
樓主: Julienne
41#
發(fā)表于 2025-3-28 17:46:40 | 只看該作者
42#
發(fā)表于 2025-3-28 22:40:06 | 只看該作者
43#
發(fā)表于 2025-3-29 01:09:13 | 只看該作者
44#
發(fā)表于 2025-3-29 06:59:27 | 只看該作者
A Robustness Approach to Study Metastable Behaviours in a Lattice-Gas Model of Swarmingcount their robustness? We illustrate this issue by considering the behaviour of a lattice-gas model with an alignment-favouring interaction rule. This model, which has been shown to display a phase transition between an ordered and a disordered phase, follows ergodic dynamics. We present a method b
45#
發(fā)表于 2025-3-29 08:19:17 | 只看該作者
Leakage Squeezing Using Cellular Automataideal for leakage squeezing applications. However, in this paper we argue that few other cryptographic properties are essential for better squeezing. In this respect we analyze few Cellular Automata (CA) configurations towards suitability in leakage squeezing. It is argued that nonlinear cellular au
46#
發(fā)表于 2025-3-29 12:29:09 | 只看該作者
1-Resiliency of Bipermutive Cellular Automata Rulesove that bipermutive rules also satisfy the condition of 1-resiliency (that is, balancedness and first order correlation-immunity), which is an important property used in the design of pseudorandom number generators for cryptographic purposes. We thus derive an enumerative encoding for bipermutive r
47#
發(fā)表于 2025-3-29 19:13:58 | 只看該作者
48#
發(fā)表于 2025-3-29 23:03:31 | 只看該作者
49#
發(fā)表于 2025-3-30 03:06:00 | 只看該作者
50#
發(fā)表于 2025-3-30 05:54:51 | 只看該作者
On Polynomial Rings in Information Dynamics of Linear CAted in the structure of the subrings generated by the coefficients of powers of polynomials with coefficients in the above mentioned ring. We present results on the equality of these subrings together with an upper bound on the number of different subrings generated by this procedure.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-31 03:32
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
永昌县| 盈江县| 枣阳市| 阆中市| 泰宁县| 育儿| 清丰县| 托里县| 漳州市| 民权县| 邻水| 长沙县| 兴化市| 萝北县| 金坛市| 揭东县| 铅山县| 松溪县| 华宁县| 尤溪县| 广平县| 固原市| 遂宁市| 慈溪市| 仁化县| 望奎县| 青龙| 新宁县| 剑川县| 即墨市| 长沙市| 阳原县| 宁城县| 道孚县| 越西县| 阿尔山市| 沙湾县| 吴桥县| SHOW| 绥德县| 铁岭市|