找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Categorical Topology; Proceedings of the L Eraldo Giuli Conference proceedings 1996 Kluwer Academic Publishers 1996 Category theory.Compact

[復(fù)制鏈接]
查看: 9388|回復(fù): 64
樓主
發(fā)表于 2025-3-21 16:55:24 | 只看該作者 |倒序?yàn)g覽 |閱讀模式
書目名稱Categorical Topology
副標(biāo)題Proceedings of the L
編輯Eraldo Giuli
視頻videohttp://file.papertrans.cn/223/222534/222534.mp4
圖書封面Titlebook: Categorical Topology; Proceedings of the L Eraldo Giuli Conference proceedings 1996 Kluwer Academic Publishers 1996 Category theory.Compact
出版日期Conference proceedings 1996
關(guān)鍵詞Category theory; Compactification; Topology; function; theorem
版次1
doihttps://doi.org/10.1007/978-94-009-0263-3
isbn_softcover978-94-010-6602-0
isbn_ebook978-94-009-0263-3
copyrightKluwer Academic Publishers 1996
The information of publication is updating

書目名稱Categorical Topology影響因子(影響力)




書目名稱Categorical Topology影響因子(影響力)學(xué)科排名




書目名稱Categorical Topology網(wǎng)絡(luò)公開度




書目名稱Categorical Topology網(wǎng)絡(luò)公開度學(xué)科排名




書目名稱Categorical Topology被引頻次




書目名稱Categorical Topology被引頻次學(xué)科排名




書目名稱Categorical Topology年度引用




書目名稱Categorical Topology年度引用學(xué)科排名




書目名稱Categorical Topology讀者反饋




書目名稱Categorical Topology讀者反饋學(xué)科排名




單選投票, 共有 1 人參與投票
 

0票 0.00%

Perfect with Aesthetics

 

0票 0.00%

Better Implies Difficulty

 

1票 100.00%

Good and Satisfactory

 

0票 0.00%

Adverse Performance

 

0票 0.00%

Disdainful Garbage

您所在的用戶組沒(méi)有投票權(quán)限
沙發(fā)
發(fā)表于 2025-3-21 21:28:38 | 只看該作者
Reflective Relatives of Adjunctions,ation . of . to .. Is it true for an arbitrary space . with this unique extension property to be already compact Hausdorff? No, there is a sophisticated counterexample [8]. Consequently, it makes sense to investigate the full subcategory of all such spaces in ., say .., which turns out to be reflect
板凳
發(fā)表于 2025-3-22 03:16:05 | 只看該作者
地板
發(fā)表于 2025-3-22 06:40:25 | 只看該作者
Generalized Reflective cum Coreflective Classes in Top and Unif,eflective or projective, is investigated in a more general setting using cone and cocone modifications of the classes used in the problem. We look also at the problem for uniform spaces. Typical results: There is no nontrivial multiprojective and orthogonal class of topological spaces; There is a re
5#
發(fā)表于 2025-3-22 12:42:31 | 只看該作者
On the Largest Coreflective Cartesian Closed Subconstruct of ,,struct of .. This implies that in any coreflective subconstruct of ., exponential objects are finitely generated. Moreover, in any finitely productive, coreflective subconstruct, exponential objects are precisely those objects of the subconstruct that are finitely generated. We give a counterexample
6#
發(fā)表于 2025-3-22 15:31:14 | 只看該作者
,α-Sober Spaces via the Orthogonal Closure Operator,ober spaces. Here, we define α-sober space for each α ? 2 in such a way that the reflective hull of α in ... is the subcategory of α-sober spaces. Moreover, we obtain an order-preserving bijective correspondence between a proper class of ordinals and the corresponding (epi)reflective hulls. Our main
7#
發(fā)表于 2025-3-22 21:06:57 | 只看該作者
8#
發(fā)表于 2025-3-22 21:13:38 | 只看該作者
Connectedness, Disconnectedness and Closure Operators, A More General Approach,rphisms is introduced. This notion yields a Galois connection that can be seen as a generalization of the classical connectedness-disconnectedness correspondence (also called torsion-torsion free in algebraic contexts). It is shown that this Galois connection factors through the collection of all cl
9#
發(fā)表于 2025-3-23 02:59:57 | 只看該作者
10#
發(fā)表于 2025-3-23 05:49:54 | 只看該作者
Tychonoff compactifications and ,-completions of mappings and rings of continuous functions,eans of presheaves of subrings of the rings .*(...) where . is open in .. In fact, a general description of all Tychonoff compactifications of a Tychonoff mapping . : . — . is obtained. Our methods yield even a characterization of all Tychonoff compactifications of Tychonoff continuous images of . i
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-15 09:20
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
运城市| 溧水县| 深水埗区| 安丘市| 繁峙县| 元氏县| 凤城市| 沭阳县| 台湾省| 盐山县| 河源市| 延寿县| 蒲城县| 临海市| 金坛市| 全椒县| 赞皇县| 夏河县| 广东省| 无棣县| 洛宁县| 三门县| 昌吉市| 雅江县| 南乐县| 永平县| 宁阳县| 景谷| 盖州市| 射洪县| 洪泽县| 甘南县| 二连浩特市| 新蔡县| 商丘市| 罗定市| 两当县| 正定县| 武鸣县| 抚远县| 佛教|