找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Catastrophe Theory; Vladimir Igorevich Arnold Textbook 19841st edition Springer-Verlag Berlin Heidelberg 1984 Bifurcations.Calc.Catastroph

[復(fù)制鏈接]
樓主: Osteopenia
11#
發(fā)表于 2025-3-23 12:00:52 | 只看該作者
12#
發(fā)表于 2025-3-23 14:17:54 | 只看該作者
13#
發(fā)表于 2025-3-23 19:50:40 | 只看該作者
Julio B. Clempner,Alexander PoznyakAn . is described mathematically by a vector field in phase space. A point of phase space is called a . of the system. The vector at this point indicates the speed of change of the state.
14#
發(fā)表于 2025-3-23 23:40:43 | 只看該作者
15#
發(fā)表于 2025-3-24 03:48:52 | 只看該作者
Lecture Notes in Computer ScienceWe consider an equilibrium state of a system depending on several parameters and assume that (in some domain of variation of the parameters) this equilibrium state does not bifurcate.
16#
發(fā)表于 2025-3-24 09:09:03 | 只看該作者
17#
發(fā)表于 2025-3-24 12:23:17 | 只看該作者
https://doi.org/10.1007/978-3-031-44579-8A . in phase space is defined as follows: at every point of the space we have not one velocity vector (as in the usual evolutionary system) but a whole set of vectors called the . (Fig. 49).
18#
發(fā)表于 2025-3-24 16:52:57 | 只看該作者
19#
發(fā)表于 2025-3-24 22:03:29 | 只看該作者
,Whitney’s Singularity Theory,In 1955 the American mathematician Hassler Whitney published the article ‘Mappings of the plane into the plane’ laying the foundations for a new mathematical theory of singularities of smooth mappings.
20#
發(fā)表于 2025-3-25 02:04:17 | 只看該作者
A Catastrophe Machine,In contrast to the example given above the application of singularity theory to the study of bifurcation of equilibrium states in the theory of elasticity is irreproachably founded.
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2026-1-29 19:26
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
宝山区| 南安市| 兖州市| 桑植县| 太原市| 梓潼县| 开阳县| 夏邑县| 苏州市| 房山区| 望谟县| 丰原市| 资阳市| 崇义县| 得荣县| 东辽县| 老河口市| 清水县| 青阳县| 耒阳市| 汾阳市| 广东省| 绥中县| 梁山县| 德令哈市| 顺昌县| 徐州市| 冕宁县| 沙田区| 始兴县| 望都县| 太仓市| 朝阳区| 革吉县| 昌乐县| 秭归县| 麻江县| 阜康市| 大港区| 汝城县| 镇安县|