找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問微社區(qū)

打印 上一主題 下一主題

Titlebook: Case Studies in Spatial Point Process Modeling; Adrian Baddeley,Pablo Gregori,Dietrich Stoyan Book 2006 Springer-Verlag New York 2006 Bran

[復(fù)制鏈接]
樓主: Spring
21#
發(fā)表于 2025-3-25 05:24:15 | 只看該作者
https://doi.org/10.1007/0-387-31144-0Branching process; Markov property; Poisson process; point process; principal component analysis; statist
22#
發(fā)表于 2025-3-25 09:00:47 | 只看該作者
978-0-387-28311-1Springer-Verlag New York 2006
23#
發(fā)表于 2025-3-25 12:25:37 | 只看該作者
24#
發(fā)表于 2025-3-25 18:51:00 | 只看該作者
Progress in Theoretical Computer Sciencedemonstrate how the martingale technique applies to establish the analogues of the classical results: Doob’s theorem, Wald identity in this multi-dimensional setting. In particular, we show that the famous Slivnyak-Mecke theorem characterising the Poisson process is a consequence of the strong Markov property.
25#
發(fā)表于 2025-3-25 20:17:56 | 只看該作者
26#
發(fā)表于 2025-3-26 03:32:10 | 只看該作者
Strong Markov Property of Poisson Processes and Slivnyak Formulademonstrate how the martingale technique applies to establish the analogues of the classical results: Doob’s theorem, Wald identity in this multi-dimensional setting. In particular, we show that the famous Slivnyak-Mecke theorem characterising the Poisson process is a consequence of the strong Markov property.
27#
發(fā)表于 2025-3-26 07:52:05 | 只看該作者
28#
發(fā)表于 2025-3-26 10:04:52 | 只看該作者
29#
發(fā)表于 2025-3-26 14:28:44 | 只看該作者
Bayesian Analysis of Markov Point Processeslihood function is only specified up to a normalising constant. We illustrate the method in the setting of Bayesian inference for Markov point processes; more specifically we consider a likelihood function given by a Strauss point process with priors imposed on the unknown parameters. The method rel
30#
發(fā)表于 2025-3-26 20:25:45 | 只看該作者
Statistics for Locally Scaled Point Processesodifications of homogeneous template point processes and have the property that regions with different intensity differ only by a location dependent scale factor. The main emphasis of the present paper is on analysis of such models. Statistical methods are developed for estimation of scaling functio
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-11 01:50
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
吴桥县| 衡山县| 乐陵市| 德州市| 阿克苏市| 南华县| 清原| 花莲市| 嘉义市| 隆安县| 塔河县| 博客| 渝中区| 邵阳市| 堆龙德庆县| 来安县| 新宾| 辛集市| 巨野县| 甘肃省| 宿州市| 镇远县| 衢州市| 翼城县| 襄城县| 施甸县| 西城区| 余干县| 吴堡县| 克什克腾旗| 临夏县| 兴隆县| 汕尾市| 水城县| 镇康县| 佛坪县| 湟中县| 宁远县| 介休市| 酉阳| 阿瓦提县|