找回密碼
 To register

QQ登錄

只需一步,快速開始

掃一掃,訪問(wèn)微社區(qū)

打印 上一主題 下一主題

Titlebook: Cartesian Currents in the Calculus of Variations II; Variational Integral Mariano Giaquinta,Giuseppe Modica,Ji?í Sou?ek Book 1998 Springer-

[復(fù)制鏈接]
樓主: 密度
11#
發(fā)表于 2025-3-23 12:42:44 | 只看該作者
Finite Elasticity and Weak Diffeomorphisms,onable to assume that all mechanical properties of a perfectly elastic material are characterized by a . function ., .,which depends on the ., and that in terms of it the . stored by the body which undergo the deformation . is given by.Materials whose mechanical properties are characterized by a stored energy functions are often called ..
12#
發(fā)表于 2025-3-23 16:29:08 | 只看該作者
Some Regular and Non Regular Variational Problems, final Sec. 5.4 we introduce the notion of (., .)-currents and develop a homological theory of the Dirichlet integral in the non regular case. Further results and question are stated in the Notes, Sec. 5.5.
13#
發(fā)表于 2025-3-23 18:52:27 | 只看該作者
https://doi.org/10.1007/3-540-69197-9onable to assume that all mechanical properties of a perfectly elastic material are characterized by a . function ., .,which depends on the ., and that in terms of it the . stored by the body which undergo the deformation . is given by.Materials whose mechanical properties are characterized by a stored energy functions are often called ..
14#
發(fā)表于 2025-3-24 01:50:03 | 只看該作者
Jan Bosch,G?rel Hedin,Kai Koskimies final Sec. 5.4 we introduce the notion of (., .)-currents and develop a homological theory of the Dirichlet integral in the non regular case. Further results and question are stated in the Notes, Sec. 5.5.
15#
發(fā)表于 2025-3-24 06:17:22 | 只看該作者
16#
發(fā)表于 2025-3-24 10:17:56 | 只看該作者
17#
發(fā)表于 2025-3-24 12:43:59 | 只看該作者
978-3-642-08375-4Springer-Verlag Berlin Heidelberg 1998
18#
發(fā)表于 2025-3-24 17:03:50 | 只看該作者
Mariano Giaquinta,Giuseppe Modica,Ji?í Sou?ekDeals with non scalar variational problems arising in geometry.Selfcontained presentation.Accessible to non specialists.The two volumes are readable independently.Chapters and even sections readable i
19#
發(fā)表于 2025-3-24 22:03:33 | 只看該作者
20#
發(fā)表于 2025-3-25 02:12:18 | 只看該作者
 關(guān)于派博傳思  派博傳思旗下網(wǎng)站  友情鏈接
派博傳思介紹 公司地理位置 論文服務(wù)流程 影響因子官網(wǎng) 吾愛(ài)論文網(wǎng) 大講堂 北京大學(xué) Oxford Uni. Harvard Uni.
發(fā)展歷史沿革 期刊點(diǎn)評(píng) 投稿經(jīng)驗(yàn)總結(jié) SCIENCEGARD IMPACTFACTOR 派博系數(shù) 清華大學(xué) Yale Uni. Stanford Uni.
QQ|Archiver|手機(jī)版|小黑屋| 派博傳思國(guó)際 ( 京公網(wǎng)安備110108008328) GMT+8, 2025-10-7 19:53
Copyright © 2001-2015 派博傳思   京公網(wǎng)安備110108008328 版權(quán)所有 All rights reserved
快速回復(fù) 返回頂部 返回列表
富锦市| 苏尼特右旗| 黄山市| 玉山县| 临洮县| 紫金县| 太湖县| 泗洪县| 太保市| 建宁县| 祥云县| 上饶县| 福州市| 厦门市| 凉山| 左贡县| 富锦市| 永顺县| 仲巴县| 翁牛特旗| 休宁县| 巫溪县| 奉新县| 漳浦县| 玉山县| 太湖县| 阿尔山市| 疏勒县| 连平县| 台北县| 韶关市| 鄢陵县| 乌什县| 建水县| 东辽县| 喀喇沁旗| 格尔木市| 长乐市| 崇礼县| 康乐县| 迁西县|